Виды приливных электростанций
ПЭС отличаются друг от друга по типу устройства и выработки энергии, несмотря на общее небольшое число таких станций в мире. В зависимости от типа станции она располагается прямо в бухте или вдоль береговой линии. В бухтах или на открытой воде устанавливаются мощные турбины. При расположении вдоль берега используются турбины с малой мощностью. На основании этих характеристик выделяется 4 типа электростанций:
- приливно-отливные;
- лагунные;
- динамические;
- генераторы приливного потока.
Приливно-отливные
Принцип действия приливно-отливных электростанций заключается в последовательном прохождении воды через турбины: сначала при приливе, затем – при отливе.
По типу лагуны
Похожи по принципу работы электростанции по типу лагуны. Для них подготавливается искусственное водохранилище, в которое должна поступать вода при отливе. Такие электростанции способны решить проблему по поиску места для размещения гидроагрегатов путем искусственного создания подходящих условий. В остальном принцип выработки электроэнергии такой же, как у приливно-отливных электростанций: вода накапливается, а затем при снижении уровня вращает турбины и производит энергию. Ни одной такой ПЭС в мире построено не было: в Уэльсе отменили строительство единственной запланированной.
Динамические
В местах с небольшими колебаниями уровня моря во время приливов и отливов строятся динамические электростанции. Это вытянутые на десятки километров вдоль береговой линии конструкции, в которых равномерно размещаются турбины малой мощности. Протяженность таких электростанций составляет более 10 километров. В остальном принцип выработки энергии такой же, как у приливно-отливных станций: преобразование потенциальной энергии в кинетическую при снижении уровня воды.
Генераторы приливного потока
Конструкция генераторов приливного потока похожа на ветрогенераторы, а принцип работы – на работу гидроэлектростанций. Это лопасти, устанавливаемые в воде, которые вращаются и вырабатывают энергию при изменении ее уровня. Такие генераторы могут устанавливаться в местах приливного потока, а также там, где поток регулярный: в реках, каналах. Распространенные места для размещения: опоры мостов и других гидросооружений. Величина выработки энергии у таких генераторов в несколько раз выше, чем у аналогичных ветряных.
Саяно-Шушенская ГЭС, 6400 МВт
Саяно-Шушенская гидроэлектростанция является крупнейшей по количеству вырабатываемой электроэнергии станцией в России. Электрическая мощность равна 6400 МВт. ГЭС находится на Енисее, по границе Красноярского края и Республики Хакасия, близ Саяногорска.
Саяно-Шушенская ГЭС занимает почётное место среди самых высоких плотин в мире и является самой высокой в России. Высота этого сооружения равна 242 метрам, а длина более километра. На строительство этого гиганта было затрачено более 9 миллионов кубических метров бетона.
Официально стартом строительства является 1963 год, а финальные доработки и сдача объекта состоялась в 2000 году.
Мощнейшие атомные электростанции в мире
Сейчас в мире работают почти двести атомных электростанций. Их география достаточно обширна – АЭС имеются в 31 стране. Рассмотрим самые большие АЭС поподробнее. Вот пятерка атомных электростанций с наибольшей установленной мощностью.
Касивадзаки-Карива (Япония)
Данная электростанция имеет семь кипящих реакторов (из которых два улучшенных). Ее мощность равняется 7965 МВт. После аварии на АЭС Фукусима выведена из эксплуатации, но в 2012 году вновь вошла в строй.
Эта электростанция самая крупная АЭС в Европе. Ее шесть реакторов могут вырабатывать мощность в 6000 МВт.
Ханул (Южная Корея)
Является одной из пары крупнейших АЭС в Южной Корее. Она имеет шесть действующих и два строящихся реактора. Мощность введенных в строй реакторов 5881 мегаватт.
Ханбит (Южная Корея)
Мощность шести реакторов водо-водяного типа электростанции Ханбит равняется 5875 МВт. До 2013 года эта станция называлась Йонван, но в связи с просьбами местных рыбаков получила новое имя, так как выловленная рыба у многих покупателей ассоциировалась с ядерной энергетикой.
Норд (Франция)
Эта электростанция находится в кантоне Гравлин. Является самой мощной АЭС во Франции, а ее мощность равняется 5460 МВт.
А что же Россия? Какое место атомная энергетика занимает в стране, являющейся ее родиной? Сейчас в России эксплуатируется 10 атомных электростанций, производящих 18 % всей электроэнергии вырабатываемой в стране. Удельный вес атомной энергии в общем энергобалансе не очень велик, что вполне объяснимо, если учесть богатые запасы углеводородов и огромный гидропотенциал страны.
Определить самую мощную АЭС в России довольно сложно – сразу четыре АЭС имеют по четыре реактора, каждый из которых имеет мощность в 1000 мегаватт. Это Балаковская, Ленинградская, Курская и Калининская АЭС. Поэтому для определения самой крупной АЭС в Российской Федерации необходимо прибегнуть к дополнительному показателю – выработанной электроэнергии за год. По этому показателю титул «самая крупная АЭС в России» принадлежит Балаковской АЭС – она вырабатывает более 30 млрд. кВт·ч в год. Эта же электростанция занимает и почетное десятое место в мировом рейтинге мощнейших АЭС.
Что это значит
Запуск О2 происходит в контексте стимулирования промышленности и научных разработок Великобритании. Создание плавающей приливной электростанции может революционизировать весь сектор приливной энергетики.
В отличие от распространенных в настоящее время береговых приливных электростанций, плавучие «подводные ветряки» не нуждаются в огромной плотине, строительство которой занимает много времени и предполагает большие финансовые вложения.
Таким образом, в теории цена киловатт-часа электроэнергии, вырабатываемой на плавающих ПЭС, может быть значительно дешевле, чем у классических ПЭС. Кроме того, обслуживание подобных электростанций может осуществляться небольшими судами, что позволяет быстро реагировать на чрезвычайные внештатные ситуации.
Разработка Orbital Marine Power также отвечает амбициозным планам Великобритании по сокращению выбросов углекислого газа в атмосферу и развитию возобновляемых источников энергии. Компании и ассоциации данной сферы надеются на помощь государства в продвижении приливной энергетики — от установки целевых показателей в 1 ГВт для «подводных ветряков» к 2030 году до внедрения специальных механизмов поддержки отрасли в виде контрактов на разницу цен.
Зеленая экономика
Как государству продвигать экологическую повестку
Комитет по аудиту в сфере охраны окружающей среды Палаты общин Великобритании в недавнем отчете признал, что государство должно поддержать активно развивающийся и многообещающий сектор приливной энергетики. В случае успеха плавающих ПЭС в Великобритании, стоит ожидать, что за ней последуют и международные рынки.
«В Orbital мы реализуем смелое и новаторское видение, — возможно, достаточно сильное, чтобы наконец сдвинуть отрасль со стартовой площадки». — отмечает гендиректор Orbital Marine Power Эндрю Скотт.
АЭС Палюэль
Расположена электростанция во Франции на территории Верхней Нормандии в маленькой деревне. Полная выходная мощность предприятия – 5320 МВт. АЭС Палюэль — четыре водных энергоблока, которые снабжаются водой из Ла-Манша. Обслуживают станцию 1250 человек. Работники станции живут в коммуне с одноименным названием и городе Дьепп.
АЭС Палюэль, Франция
Электростанции снабжают жителей планеты главным ресурсом и несут определенную угрозу. На таких предприятиях происходят аварии, которые расцениваются как масштабные техногенные катастрофы. Возможность вырабатывать электроэнергию не нанося вред окружающей среде не сопоставима с последствиями взрывов и возгораний, которые ощущает весь мир.
Характеристика промышленных электростанций
Промышленными называются энергоустановки, включенные в состав производственных предприятий. Их основное предназначение заключается в энергоснабжении соответствующих предприятий и прилегающих территорий. К принципиальным особенностям промышленных станций относятся:
По виду производимой энергии промышленные станции подразделяются на следующие группы:
- Вырабатывающие только электрическую энергию
- Снабжающие потребителей электро- и тепловой энергией
- Дополнительно снабжающие потребителей сжатым воздухом
В зависимости от типа установленного двигателя, выделяют электростанции с паровыми или газовыми турбинами, двигателями внутреннего сгорания, локомобилями.
Помимо мощности и типа станции, существует ряд других параметров и характеристик. От фазности станции зависит возможность подключения отдельных приборов-потребителей. Существуют однофазные и трехфазные автономные энергоустановки. В трехфазной установке мощность распределяется равномерно между всеми фазами.
Не менее важной характеристикой является частота вырабатываемого установкой тока. В соответствии со стандартами этот показатель составляет 50 Гц в России
В других странах, включая Японию, Канаду и Соединенные Штаты, данный параметр может достигать 60 Гц. Максимальная сила вырабатываемого тока энергетических установок определяется в амперах. Не допускается подключать к энергоустановке нагрузку, ампераж потребления которой превышает предельную возможность передачи тока агрегатом.
Учитывая все характеристики электростанций, удастся обеспечить их максимальную производительность и стабильную работу на протяжении долгого времени. В зависимости от наличия или отсутствия конкретных технических характеристик необходимо регулировать нагрузку на станцию.
Топливно-знергетический комплекс ЭЛЕКТРОЭНЕРГЕТИКА Учитель географии Головко О.Н 2011-2012 уч. год
Цели урока: Показать значение, роль и состав электроэнергетики России Сформировать представление об основных типах электростанций и их размещении Выявить проблемы электроэнергетики Развивать умение работать с различными источниками географической информации.
Практическое задание: Пользуясь текстом учебника и картами атласа, дайте характеристику ТЭС, ГЭС и АЭС по плану: Доля от общего объема электроэнергии, производимой в стране Недостатки ЭС Достоинства Факторы размещения Крупнейшие электростанции (показать на карте)
Информацию оформить в виде таблицы Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС
Теплоэлектростанции (ТЭС) Сургутская ТЭС
Таблица: Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС ТЭС 65 Стоимость и время строительства невелики, используются разные виды топлива, дешевый вид электроэнергии Использование исчерпаемых ресурсов, сильное загрязнение окружающей среды (воздух, почва) Топливный Потребления (вблизи газопроводов) Сургутская
Гидроэлектростанции (ГЭС) Красноярская ГЭС
Определите районы с наибольшими запасами гидроэнергии В каких районах затраты на производство минимальны? В каких районах наиболее перспективно строительство ГЭС?
Таблица: Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС ГЭС 19 Не загрязняет атмосферу, используются возобновимые ресурсы, самый дешевый вид электроэнергии Строительство долго и дорого, водохранилища затапливают с/хоз. угодья, изменяют микроклимат территорий, гидрологический режим, «мертвая вода» На реках с большим падением, в малообжитых, горных районах Саяно-Шушенская, Краснояр-ская
Атомные электростанции (АЭС) Билибинская АЭС
Таблица: Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС АЭС 16 Экономичность Опасность радиоактивного загрязнения при авариях, проблема захоронения ядерных отходов Отсутствие других источников энергии, потребительский Курская, Смоленская, Тверская, Кольская, Нововоронежская, Билибинская
Почему человечество ищет нетрадиционные источники энергии?
Приливные электростанции (ПЭС) Кислогубская ПЭС Кислогубская ПЭС
Геотермальные электростанции (ГеоЭС) Мутновская ГеоЭС
Мутновская ГеоЭС
Выводы: Электроэнергетика использует природные ресурсы, как исчерпаемые так и неисчерпаемые. Электроэнергетика является загрязнителем окружающей среды Для уменьшения нагрузки на природу необходимо бережное и экономное расходование электроэнергии, а также более широкое применение нетрадиционных источников: энергии солнца, ветра, приливов и отливов.
Источники информации: В.И. Дронов, В.Я. Ром. География. Россия. Население и хозяйство. Учебник для 9 класса
Красноярская ГЭС, 6000 МВт
Красноярская гидроэлектростанция достигает мощности вырабатываемого тока в 6000 МВт. ГЭС располагается вблизи города Дивногорск, Красноярского края. Станция занимает второе место среди самых мощных электростанций России. Она одна покрывает около 30% потребностей жителей Красноярского края в электричестве.
Самым энергозатратным и одним из самых важных потребителей считается алюминиевый завод в Красноярске. Кроме основной задачи ГЭС также служит щитом, оберегающим местность в её низовьях от наводнений.
Началом строительства можно считать решение о необходимости данного объекта, которое было принято 14 июля 1955 года. Конец же реализации столь необходимого проекта и запуск в эксплуатацию состоялся в 1982 году.
Крупнейшая ветряная электростанция
London Array
Системы ветрогенераторов устанавливают как на суши, так и в воде, однако второй вариант предпочтительнее, ведь скорость ветра и другие условия в этой области наиболее благоприятны. В то же время строительство наводных конструкций обходится значительно дороже, но и работают они производительнее.
Наибольшим объектом ветроэнергетики является London Array, расположенный неподалеку от Лондона в Великобритании. Благодаря своей мощности в 630 МВт установка обеспечивает электроэнергией порядка 500 тыс. жителей города.
London Array
Был запланирован и второй этап строительства комплекса, но из-за вмешательства природоохранных организаций работа была свернута.
Уже сейчас около четверти всей энергии, используемой человеком, получается из возобновляемых источников. Иными словами, не будет ничего удивительного в том, что через 10 лет у каждого из нас на крыше будет стоять как минимум несколько солнечных панелей, отапливать дома мы будем тепловыми насосами, а в огороде, рядом с грушами и картофелем, будут «расти» ветряные установки.
АЭС: преимущества и недостатки
Мы подробно рассмотрели достоинства и недостатки АЭС перед другими способами получения электроэнергии.
«Но как же радиоактивные выбросы АЭС? Рядом с атомными станциями невозможно жить! Это опасно!» — скажете вы. «Ничего подобного» — ответит вам статистика и мировое ученое сообщество.
По статистическим сравнительным оценкам, проведенным в разных странах, отмечается, что смертность от заболеваний, которые появились от воздействия выбросов ТЭС выше, чем смертность от заболеваний, которые развились в организме человека от утечки радиоактивных веществ.
Собственно, все радиоактивные вещества прочно заперты в хранилищах и ждут часа, когда их научатся остаточно перерабатывать и использовать. В атмосферу такие вещества не выбрасываются, уровень радиации в населенных пунктах близ АЭС не больше традиционного уровня радиации в крупных городах.
Говоря про достоинства и недостатки АЭС, нельзя не вспомнить о стоимости постройки и запуска атомной станции. Ориентировочная стоимость небольшой современной ядерной станции – 28 миллиардов евро, специалисты утверждают, что стоимость ТЭС примерно такая же, здесь никто не выигрывает. Однако преимущества АЭС будут в меньших затратах на покупку и утилизацию топлива – уран хоть и дороже, но способен «работать» более года, в то время как запасы угля и газа необходимо постоянно пополнять.
Недостатки АЭС перед ТЭС
-
Недостатки АЭС перед ТЭС это в первую очередь наличие радиоактивных отходов. Радиоактивные отходы на атомных станциях стараются по максимуму переработать, но утилизировать совсем их не получается. Конечные отходы на современных АЭС перерабатывают в стекло и хранят в специальных хранилищах. Удастся ли их когда-нибудь использовать – пока неизвестно.
2. Недостатки АЭС – это и небольшой КПД относительно ТЭС. Так как процессы в ТЭС протекают при более высоких температурах, они являются более производительными. В АЭС этого добиться пока сложно, т.к. циркониевые сплавы, которые косвенно участвуют в ядерных реакциях, не могут выдерживать запредельно высоких температур.
3. Особняком стоит общая проблема тепло и атомных электростанций. Недостаток АЭС и ТЭС – это тепловое загрязнение атмосферы. Что это значит? При получении ядерной энергии выделяется большое количество тепловой энергии, которая выбрасывается в окружающую среду. Тепловое загрязнение атмосферы – проблема сегодняшнего дня, оно влечет за собой множество проблем вроде создания тепловых островов, изменения микроклимата и, в конечном счете, глобального потепления.
Современные АЭС уже решают проблему теплового загрязнения и используют для охлаждения воды собственные искусственные бассейны или градирни (специальные охладительные башни для охлаждения больших объемов горячей воды).
Преимущества и недостатки гидроэлектростанций
По своей значимости, ГЭС находятся на втором месте после тепловых электростанций. В своей работе они используют энергию воды, преобразующейся в электрический ток, и относящейся к возобновляемым ресурсам. Простое управление такими станциями не требует большого количества персонала. Коэффициент полезного действия доходит до 85%.
Электричество, производимое на ГЭС считается самым дешевым, его цена примерно в 5-6 раз меньше, чем на тепловых электроустановках. Гидроэлектростанции отличаются высокой маневренностью и могут быть запущены в работу в течение 3-5 минут, тогда как на ТЭС для этого требуется несколько часов
Это качество особенно важно при перекрытии пиковых нагрузок в суточном графике электроснабжения
Основными недостатками подобных сооружений являются:
- Значительные капиталовложения на их возведение.
- Привязка к определенной территории или местности с гидроресурсами.
- В процессе строительства затапливаются огромные территории, большие сельскохозяйственные площади выводятся из пользования, наносится ущерб рыбному хозяйству, нарушается экологическое равновесие.
- Полная мощность электростанции реализуется лишь в определенное время года, в период максимального подъема воды.
На российских реках сооружаются целые каскады гидроэлектростанций. Наиболее крупными считаются Ангаро-Енисейский каскад, включающий Братскую, Красноярскую, Саяно-Шушенскую, Усть-Илимскую ГЭС, а также Волжский каскад с Рыбинской, Угличской, Иваньковской, Саратовской, Волжской и другими ГЭС.
Достаточно перспективным направлением считается гидроаккумулирующая электростанция – ГАЭС. В основе их работы заложен принцип действия, связанный с цикличным перемещением одинакового объема воды между верхним и нижним бассейнами. Ночью за счет излишков электроэнергии вода подается снизу-вверх, а в дневное время при резком росте энергопотребления она сбрасывается вниз и вращает турбины, производя электричество. Эти станции совершенно не зависят от естественных колебаний речного стока, а под водохранилища требуется гораздо меньше затапливаемых площадей.
Что такое ядерный реактор
Ядерный реактор — это устройство, в котором происходит постоянная контролируемая ядерная реакция с целью получения электроэнергии.
Другими словами, это устройство, внутри которого происходит превращение одного вещества (ядерное топливо) в другое (пар) с выделением огромной тепловой энергии.
История создания
Развитие ядерной энергетики связано с именем французского химика Антуана Анри, который занимался изучением урана и обнаружил его радиоактивность. Позже Пьер и Мария Кюри смогли выделить из солей урана полоний и радий.
Первая ядерная установка была создана в США Э. Ферми в 1942 году. В 1945 году вторым выпущенным в мире реактором стал ZEEP в Канаде. А в 1946 году под руководством И. В. Курчатова ядерный реактор сконструировали и в СССР. Первые такие устройства сильно отличались от современных, они не имели системы охлаждения и обладали минимальной мощностью. Но они дали толчок к развитию атомной энергетики во всем мире. Первая атомная электростанция была построена в Обнинске.
Устройство реактора, главные комплектующие элементы агрегата
Строение реакторов, независимо от их типа, одинаковое:
- Активная зона, в которой находятся ядерное топливо и замедлитель быстрых нейтронов. В этой зоне происходит управляемая реакция деления ядер. В качестве замедлителя может использоваться обычная вода, «тяжёлая» вода, жидкий графит и др.
- Отражатель нейтронов вокруг активной зоны.
- Теплоноситель, который выводит энергию, образующуюся при делении ядер в активной зоне. Теплоносителем может выступать вода, жидкий натрий и др.
- Система управления ядерной реакцией. Представляет собой стержни, содержащие кадмий и бор. Для регулирования скорости реакции их при необходимости вводят в активную зону для поглощения лишних нейтронов.
- Защитная система, которую делают из бетона с железным наполнителем. Она надежно удерживает нейтроны и радиационное излучение.
- Система дистанционного управления.
Принцип работы
Работу реакторной установки можно сравнить с функционированием обычной печи. Только используются не уголь и дрова, а ядерное топливо. В отличие от печи, пламени не видно, так как реакция происходит на уровне деления ядер. Ядра распадаются на мелкие частицы, которые в свою очередь становятся источниками образования нейтронов. За счет этого процесса происходит высвобождение большого количества энергии. Освобожденная энергия нагревает воду, преобразуя ее в пар. Пар вращает турбину генератора, преобразуя энергию движения в электроэнергию.
Данная схема наглядно иллюстрирует принцип работы реакторной установки:
Основной функцией обслуживающего персонала АЭС является регулирование скорости ядерной реакции с помощью системы управления в виде стержней, которые операторы вводят в активную зону.
Силоду, Китай (13,86 ГВт)
В верховьях реки Янцзы есть приток Цзиньша, на котором была построена крупная гидроэлектростанция Силоду. Так назвали её по близлежащему посёлку Силоду – центру городского уезда Юншань провинции Юньнань. По руслу реки проходит административная граница с другой провинцией – Сычуань. После завершения строительства станция стала важнейшим элементом проекта регулируемого стока реки Цзиньша, который преследовал не только цели выработки электроэнергии, но и уменьшения количества ила, попадающего в Янцзы.
Силоду стала третьей по мощности гидроэлектростанцией мира. Максимальная вместимость её водохранилища равна почти 12,7 кубических километра.
В 2005 году строительство ГЭС временно было приостановлено для более детального изучения его последствий на экологию данной местности, но позднее было возобновлено. Русло Цзиньша было перекрыто в 2009 году, первую турбину на 770 МВт ввели в эксплуатацию в июле 2013 года, а в апреле 2014 году заработала уже 14-я турбина. В августе того же года были запущены и последние агрегаты ГЭС.
Плюсы и минусы ВЭС
На сегодняшний день в мире насчитывается более 20 000 ветроэлектростанций разной мощности. Большинство из них установлены на побережье морей и океанов, а также в степных или пустынных районах. Ветроэлектростанции обладают массой преимуществ:
- нет необходимости в подготовке площадей для монтажа установок
- ремонт и обслуживание ВЭС обходятся значительно дешевле, чем любых других станций
- потери на передачу энергии значительно ниже вследствие близости от потребителей
- отсутствие вреда для окружающей природы
- источник энергии совершенно бесплатный
- земли между установками можно использовать для сельскохозяйственных целей
При этом, имеются и минусы:
- нестабильность источника вынуждает использовать большое количество аккумуляторных батарей
- установки при работе издают шум
- мерцание от лопастей ветряков весьма отрицательно воздействует на психику
- стоимость энергии намного выше, чем при использовании других методов производства
Дополнительным недостатком можно назвать высокую инвестиционную стоимость проектов таких станций, складывающуюся из цены техники, стоимости транспортировки, монтажа и эксплуатации. Учитывая срок службы отдельной установки — 20-25 лет, многие станции являются неокупаемыми.
Недостатки достаточно существенные, но отсутствие иных возможностей снижает их влияние на принимаемые решения. Для многих регионов или государств ветроэнергетика является основным способом получать собственную энергию, не зависеть от поставщиков из других стран.
Украина, АЭС в Запорожье.
Вырабатывает около 6000 МВт энергии. Эта третья по продуктивности в мире и первая – в Европе структура подобного плана.
Впервые на полную катушку станция заработала в начале 90-х, сразу же превратившись в самое мощное предприятие всего Советского Союза. Общая мощность станции достигает 6000 МВт.
Находится АЭС на берегу Каховского водохранилища недалеко от города Энергодар Запорожской области. Станция обеспечивает работой более 11,5 тыс. человек. За счет строительства данного предприятия весь регион получил значительный толчок в энергетическом плане. За последние десятки лет данный район существенно вырос как в социальном, так и в производственном плане.
Экономическое обоснование строительства ветровых электростанций
Перед тем, как принимать решение о строительстве в данном участке местности ВЭС, производятся тщательные и обширные изыскания. Специалисты выясняют параметры местных ветров, направление, скорости, прочие данные. Примечательно, что метеорологические сведения в данном случае пользы приносят мало, так как они собираются в разных уровнях атмосферы и преследуют различные цели.
Полученная информация дает основание для расчетов эффективности, ожидаемой производительности и мощности станции. Учитываются, с одной стороны, все расходы на создание станции, включая приобретение оборудования, доставку, монтаж и пусковые работы, эксплуатационные издержки и т.п. С другой стороны, подсчитывается прибыль, которую может принести работа станции. Полученные значения сопоставляются между собой, сравниваются с параметрами других станций, после чего выносится вердикт о степени целесообразности строительства станции в данном регионе.
Мощность – ключевой параметр бытовой электростанции
Главным техническим параметром любой энергетической установки является мощность
. Производители бытовых электростанций обозначают предельный уровень мощности, который достигается только в непродолжительные временные промежутки. Для подсчета реального уровня мощности необходимо дополнительно учитывать коэффициент мощности. Реальная производительность, как правило, меньше максимальной и определяется в киловаттах.
Бытовые электростанции разных типов обладают следующей мощностью:
- Бензиновые: 15-20 кВт
- Дизельные: до 3000 кВт
Генераторы с различной отдачей отличаются друг от друга по габаритам, весу, стоимости и прочим параметрам. При выборе бытовой электростанции следует рассматривать все характеристики в совокупности, включая коэффициент полезного действия, указываемый в предоставляемой документации на агрегат.
Атомные электростанции России
Балаковская АЭС
Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.
Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.
Белоярская АЭС
Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).
На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.
В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.
БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.
БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.
Билибинская АЭС
Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.
Вырабатывает электрическую и тепловую энергию.
Калининская АЭС
Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.
Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.
4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.
Кольская АЭС
Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.
Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.
Курская АЭС
Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.
Мощность станции — 4000 МВт.
Ленинградская АЭС
Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.
Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.
Нововоронежская АЭС
Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.
На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.
Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.
Ростовская АЭС
Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.
В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.
В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.
Смоленская АЭС
Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.
В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.