Бесколлекторный двигатель

Обозначения бесколлекторных моторов[править]

бессколлекторных моторов

Часто обозначение бесколлекторного мотора тесно связано с его геометрическими и электрическими параметрами.

Рассмотрим обозначение на примере мотора: Tower Pro 2408-21T

  • первые две цифры (24) — обозначают диаметр статора (иногда ротора) в мм
  • вторые две цифры (08) — обозначают длину каждого магнита в моторе в мм
  • далее может следовать одна или две цифры (21) — это количество витков на каждом зубе статора
  • еще бывает в конце буква T (или символ Δ) — обозначающий намотку типа «дельта» («треугольник») ИЛИ буква Y (или символ *) — говорящий о намотке типа «звезда».

При большем диаметре ротора (статора) получается больший крутящий момент, при прочих равных условиях. Длина магнитов, также как и диаметр ротора, влияет на крутящий момент мотора.

С витками работает соотношение: «меньше витки — больше обороты». Если необходимо поставить небольшой винт и получить высокие обороты, то необходимо выбирать мотор с небольшим количеством витков. Если задача крутить большой винт на небольших оборотах (Slow Flyer) — следует выбирать мотор с большим количеством витков.

Описание коллекторного двигателя

Прежде, перед рассмотрением вариантов установок, проясним, что значит понятие коллекторный двигатель. Электрический мотор, это устройство, преобразующее электрику в механику и наоборот. Если обмотка мотора имеет связующее звено с узлом коллектора и принимает участие в трансформации энергии, то такой агрегат носит название коллекторный.

Якоби Б.С. (1801-1874гг) изобретатель первого коллекторного двигателя в 1837г.

Элементы электрического двигателя:

  • Ротор, деталь мотора, подвержена вращению;
  • Статор, деталь мотора, остаётся в стационарном положении;
  • Индуктор, кусок агрегата, который с целью сформировать момент, участвует в образовании потока магнитного поля. В состав индуктора входят: магниты, совокупность витков. Механизм выполняется в качестве части ротора или неподвижной детали;
  • Якорь, агрегат, поддерживающий движение нагрузочного, упорядоченного движения частиц, носителей электрического заряда и за счет индукции, формирующий электродвижущую силу. Функцию якоря выполняет либо ротор, либо статор;
  • Щетки, деталь, являющаяся частью электрической цепи, посредством которой ток передаётся к якорю. Материал, из которого делают щётки, как правило, графит. Двигатель содержит минимум две щётки для «положительного» и «отрицательного» полюсов;
  • Коллектор, часть агрегата, контактирующая со щетками и распределяющая ток.

Название агрегата произошло благодаря наименованию узла ротора электродвигателя – коллектора. Визуально коллектор представляет собой деталь, в виде цилиндра, которая состоит из пластин меди, изолированных между собой.

Универсальный коллекторный двигатель.

Бесколлекторный двигатель

Варианты конструкции [ править ]

В этом разделе не процитировать любые источники . Пожалуйста, помогите улучшить этот раздел , добавив цитаты из надежных источников . Материал, не полученный от источника, может быть оспорен и удален . ( Май 2018 г. ) ( Узнайте, как и когда удалить этот шаблон сообщения )

Схема для стилей намотки треугольником и звездой. (Это изображение не иллюстрирует индуктивные и генераторные свойства двигателя)

Бесщеточные двигатели могут быть сконструированы в нескольких различных физических конфигурациях: В «традиционной» (также известной как внутренняя ) конфигурация постоянные магниты являются частью ротора. Ротор окружен тремя обмотками статора. В конфигурации внешнего ротора (или внешнего ротора) радиальное соотношение между катушками и магнитами обратное; Катушки статора образуют центр (сердечник) двигателя, в то время как постоянные магниты вращаются внутри выступающего ротора, который окружает сердечник. Плоский или осевой тип потокаиспользуется там, где есть ограничения по пространству или форме, в нем используются пластины статора и ротора, установленные лицом к лицу. У аутраннеров обычно больше полюсов, они объединены в три группы для поддержания трех групп обмоток и имеют более высокий крутящий момент на низких оборотах. Во всех бесщеточных двигателях катушки неподвижны.

Существуют две распространенные конфигурации электрических обмоток; конфигурация треугольника соединяет три обмотки друг с другом ( последовательные цепи ) в треугольную схему, и питание подается на каждое из соединений. Конфигурация звезда ( Y- образная), иногда называемая звездообразной обмоткой, соединяет все обмотки с центральной точкой ( параллельные цепи ), и питание подается на оставшийся конец каждой обмотки.

Двигатель с обмотками в треугольной конфигурации дает низкий крутящий момент на низкой скорости, но может дать более высокую максимальную скорость. Конфигурация «звезда» обеспечивает высокий крутящий момент на низкой скорости, но не такую ​​высокую максимальную.

Хотя на эффективность сильно влияет конструкция двигателя, звездообразная обмотка обычно более эффективна. В обмотках, соединенных треугольником, половинное напряжение прикладывается к обмоткам, прилегающим к ведомому выводу (по сравнению с обмоткой непосредственно между ведомыми выводами), увеличивая резистивные потери. Кроме того, обмотки могут позволить паразитным электрическим токам высокой частоты полностью циркулировать внутри двигателя. Обмотка, соединенная звездой, не содержит замкнутого контура, в котором могут протекать паразитные токи, предотвращая такие потери.

С точки зрения контроллера, два стиля обмоток обрабатываются одинаково.

Определение и устройство

В справочниках и энциклопедиях приводят, такое определение:

«Коллекторным называется электродвигатель, у которого датчиком положения вала и переключателем обмоток является одно и то же устройство – коллектор. Такие двигатели могут работать либо только на постоянном токе, либо и на постоянном, и на переменном.»

Коллекторный электродвигатель, как и любой другой, состоит из ротора и статора. В этом случае ротор – является якорем. Напомним, что якорем называется та часть электрической машины, которая потребляет основной ток, и в которой индуцируется электродвижущая сила.

Бесколлекторный двигатель

Для чего нужен и как устроен коллектор? Коллектор расположен на валу (роторе), и представляет собой набор продольно расположенных пластин, изолированных от вала и друг от друга. Их называют ламелями. К ламелям подключаются отводы секций обмоток якоря (устройство якорной обмотки КДПТ вы видите на группе рисунков ниже), а точнее к каждой из них подключен конец предыдущей и начало следующей секции обмотки.

Популярные статьи  для чего применяются плавкие предохранители

Бесколлекторный двигатель

Ток к обмоткам подаётся через щетки. Щётки образуют скользящий контакт и во время вращения вала соприкасаются то с одной, то с другой ламелью. Таким образом происходит переключение обмоток якоря, для этого и нужен коллектор.

Щеточный узел состоит из кронштейна с щеткодержателями, непосредственно в них и устанавливаются графитовые или металлографитовые щетки. Для обеспечения хорошего контакта щетки прижимаются к коллектору пружинами.

На статоре устанавливаются постоянные магниты или электромагниты (обмотка возбуждения), которые создают магнитное поле статора. В литературе по электрическим машинам вместо слова «статор» чаще используют термины «магнитная система» или «индуктор». На рисунке ниже изображена конструкция ДПТ в разных проекциях. Теперь же давайте разберемся как работает коллекторный двигатель постоянного тока!

Бесколлекторный двигатель

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

Бесколлекторные двигатели обладают улучшенными показателями мощности на килограмм веса (собственного) и широким диапазоном скорости вращения; впечатляет и КПД этой силовой установки

Немаловажно, что от установки практически не излучаются радиопомехи. Это позволяет разместить рядом с ней чувствительное к помехам оборудование без опасений за корректность работы всей системы

Расположить и использовать бесколлекторный двигатель можно в том числе и в воде, это не повлияет на него отрицательным образом. Также его конструкция предусматривает расположение и в агрессивных средах. Однако в этом случае следует заранее продумать месторасположение блока управления. Помните, что только при бережной аккуратной эксплуатации силовой установки она будет работать на вашем производстве эффективно и бесперебойно на протяжении долгих лет.

Длительный и кратковременный режим работы — основные для БД. Например для эскалатора или конвейера подходит длительный режим работы, в котором электродвигатель работает статично в течение долгого количества часов. Для длительного режима работы предусмотрена повышенная внешняя теплоотдача: тепловыделения в окружающую среду должны превышать внутренние тепловыделения силовой установки.

В кратковременном режиме работы двигатель за время своей работы не должен успеть нагреться до максимального значения температуры, т.е. должен быть выключен до наступления этого момента. Во время перерывов между включениями и работой двигателя он должен успеть остыть. Именно так работают бесколлекторные двигатели в подъемных лифтовых механизмах, электробритвах, сушилках фенах и другом современном электрооборудовании.

Сопротивление обмотки двигателя связано с коэффициентом полезного действия силовой установки. Максимального КПД можно достигнуть при наименьшем сопротивлении обмотки.

Максимальное рабочее напряжение — это предельное значение напряжения, которое можно подавать на обмотку статора силовой установки. Максимальное рабочее напряжение напрямую связано с максимальными оборотами двигателя и и максимальным значением тока обмотки. Максимальное значение тока обмотки лимитировано возможностью перегрева обмотки. Именно по этой причине необязательным, но рекомендуемым условием эксплуатации электродвигателей является отрицательная температура окружающей среды. Она позволяет значительно компенсировать перегрев силовой установки и увеличить длительность ее работы.

Максимальная мощность двигателя — это предельная мощность, которой может достигнуть система за несколько секунд. Стоит учитывать, что длительная работа электродвигателя на максимальной мощности неизбежно приведет к перегреву системы и сбою в его работе.

Номинальная мощность — это та мощность которую может развивать силовая установка в течение периодичного заявленного производителем разрешенного периода работы (одно включение).

Угол опережения фазы предусмотрен в электродвигателе из-за необходимости компенсации на задержку переключения фаз.

Двигатели используются во многих областях техники. Для того чтобы происходило вращение ротора двигателя необходимо наличие вращающегося магнитного поля. В обычных двигателях постоянного тока это вращение осуществляется механическим способом с помощью щеток, скользящих по коллектору. При этом возникает искрение, а, кроме того, из-за трения и износа щеток для таких двигателей необходимо постоянное техническое обслуживание.

Благодаря развитию техники стало возможным генерировать вращающееся магнитное поле электронным способом, что было воплощено в бесколлекторных двигателях постоянного тока (БДПТ).

Конструкция[править]

По конструкции бесколлекторные моторы делятся на две группы: inrunner и outrunner.

  • inrunner — имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри обмоток магнитный ротор.
  • outrunner — имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами.

Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным. По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя.

  • Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте. Эти моторы по конструкции могут быть только «инраннерами». Такие двигатели часто продаются уже с закреплёнными на них планетарными редукторами, так как их обороты слишком велики для прямого вращения пропеллера. Иногда такие моторы используют и без редуктора — например, ставят на гоночные авиамодели.
  • Моторы с большим количеством полюсов имеют меньшую скорость вращения, но зато больший крутящий момент. Такие моторы позволяют использовать пропеллеры большого диаметра, без необходимости применять редукторы.

Вообще, пропеллеры большого диаметра и небольшого шага, при относительно низкой частоте вращения обеспечивают большую тягу, но сообщают модели небольшую скорость, в то время как маленькие по диаметру пропеллеры с большим шагом на высоких оборотах обеспечивают высокую скорость, при сравнительно небольшой тяге. Таким образом, многополюсные моторы идеально подходят для моделей, которым нужна высокая тяговооруженность, а двухполюсные без редуктора — для скоростных моделей. Для более точного подбора двигателя и пропеллера к определенной модели, можно воспользоваться специальными инструментами для расчётов.

Также бесколлекторные моторы, и соответственно регуляторы хода для них, можно разделить на 2 типа: с датчиками положения ротора и без них. Моторы без датчиков проще в изготовлении, поэтому большинство моторов и контроллеров в настоящее время именно такие (кроме специальных автомодельных).

Популярные статьи  двухконтурный электрический котел

Производителей бесколлекторных моторов и регуляторов к ним очень много. Конструктивно и по размерам бесколлекторные двигатели тоже сильно различаются. Более того, самостоятельное изготовление бесколлекторных двигателей на основе деталей от CD-приводов и других промышленных бесколлекторных моторов стало весьма распространенным явлением в последнее время. Возможно, именно по этой причине у бесколлекторных двигателей сегодня нет даже такой приблизительной общей классификации как у коллекторных собратьев.

Коллекторный двигатель

Коллекторные двигатели бывают трехфазные и однофазные. Однофазные двигатели применяются в электрической тяге и для приводов малых и средних мощностей.

Габаритные размеры двигателя типа ДР-25.

Коллекторные двигатели изготовляются в защищенном исполнении во избежание случайных прикосновений к вращающимся и токоведущим частям и попадания внутрь машины посторонних предметов и капель воды, падающих отвесно.

Коллекторные двигатели могут быть постоянного, переменного тока и универсальными, способными работать как от сетей постоянного, так и от сетей переменного тока. Коллекторные двигатели-постоянного тока выпускаются либо с параллельным ( независимым) возбуждением, либо с последовательным возбуждением, либо с постоянными магнитами.

Коллекторные двигатели с последовательным возбуждением имеют небольшой сдвиг фаз между током в якоре и магнитным потоком индуктора и применяются для включения в сеть переменного тока.

Коллекторные двигатели могут быть построены как для однофазного, так и для трехфазного тока и раз — деляются по роду своих характеристик на две основные группы: 1) двигатели последовательные, которые резко изменяют свою скорость с изменением нагрузки и дают высокую скорость при малых значениях тормозного момента на валу, развивая в то же время большой начальный вращающий момент при относительно малом потреблении тока; 2) двигатели шунтовые, скорость которых меняется при изменении нагрузки весьма мало благодаря тому, что магнитный поток их, определяясь током ответвленной возбуждающей цепи, меняется при нагрузке незначительно. Скорость этих двигателей может быть изменяема вверх или — вниз от синхронной в широких пределах. Нек-рые — из них допускают вполне плавное изменение-скорости, другие-лишь ступенями.

Векторная диаграмма однофазного коллекторного двигателя.| Коллекторный двигатель с компенсационной обмоткой и добавочными полюсами.| Репульсионный двигатель о v / о.| Связь направления вращения репульсионного двигателя с положением щеток.| Репульсионный двигатель с двойным комплектом щеток.

Мощные коллекторные двигатели мощностью до 1500 кВт применяются в качестве тяговых в ряде западноевропейских стран.

Коллекторные двигатели компрессоров и вентиляторов имеют последовательное возбуждение, а преобразователи и делители напряжения, которые могут работать без нагрузки, обычно выполняют со смешанным возбуждением. Обмотки параллельного или независимого возбуждения этих машин создают магнитный поток, достаточный для ограничения их частоты вращения в допустимых пределах при работе без нагрузки. Генераторы преобразователей постоянного тока обычно имеют смешанное возбуждение. Большую магнитодвижущую силу у них создает обмотка независимого возбуждения. Генераторы служебного тока выполняют с параллельным регулируемым возбуждением.

Компенсированный коллекторный двигатель с питанием со стороны ротора.| Однофазный коллекторный двигатель последовательного возбуждения.| Электромагнитный момент в коллекторных двигателях.

Однофазные последовательные коллекторные двигатели ( рис. 6.9) имеют сосредоточенную обмотку возбуждения 0В, расположенную на явновыраженных полюсах и соединенную последовательно с многофазной обмоткой якоря Я, секции которой присоединены к коллектору. Для снижения потерь в стали статор и ротор выполняются шихтованными. Конструкция однофазных коллекторных двигателей сходна с конструкцией двигателей постоянного тока последовательного возбуждения.

Габаритные размеры двигателей типов МУН-1, МУН-2 и МУН-1 С, МУН-2С.

Коллекторные двигатели серии МУН предназначены для привода различных механизмов промышленного применения.

Коллекторный двигатель однофазного тока частотой 5Q гц состоит из статора, якоря, щеточного устройства и подшипниковых щитов.

Коллекторные двигатели малой мощности выпускаются в массовых количествах, поэтому для изолировки пазов и обмотки якорей разработано много типов полуавтоматических станков. Таким образом ручные обмотки механизированы в большей степени, чем катушечные обмотки машин средней мощности. Поэтому название обмоток скорее определяет порядок укладки проводов в пазы, чем технологию выполнения.

Малогабаритные многополюсные бесколлекторные (вентильные, BLDC) двигатели постоянного тока Dunkermotoren

Диаметр корпуса / Размер стороны фланца – 32,4…95 мм,
мощность – 6,0…1 100 Вт, номинальный крутящий момент – 0,026…2,9 Нм, номинальная
скорость вращения– до 4 050 об/мин

Ссылки на подробное описание малогабаритных бесколлекторных
двигателей постоянного тока:

  • Многополюсные бесколлекторные двигатели постоянного тока 

Бесколлекторные
двигатели со встроенной электроникой:

Ссылки на сопутствующие компоненты малогабаритного привода:

  • Редукторы
  • Датчики  и тормозные устройства
  • Блокиуправления

Ознакомиться с описанием всей продукции компании Dunkermotoren можно по данной ссылке.

Конструкция[ | ]

Конструктивно современные вентильные привода состоят из электромеханической части (синхронной машины и датчика положения ротора) и из управляющей части (микроконтроллер и силовой мост).

Упоминая о конструкции ВД, полезно иметь в виду и неконструктивный элемент системы — программу (логику) управления.

Синхронная машина, используемая в ВД, состоит из шихтованного (собранного из отдельных электрически изолированных листов электротехнической стали — для снижения вихревых токов) статора, в котором расположена многофазная (обычно двух- или трёхфазная) обмотка, и ротора (обычно на постоянных магнитах).

В качестве датчиков положения ротора в БДПТ применяются датчики Холла, а в ВД — вращающиеся трансформаторы и накапливающие датчики. В т. н. «бездатчиковых» системах информация о положении определяется системой управления по мгновенным значениям фазных токов.

Информация о положении ротора обрабатывается микропроцессором, который, согласно программе управления, вырабатывает управляющие ШИМ-сигналы. Низковольтные ШИМ-сигналы микроконтроллера затем преобразуются усилителем мощности (обычно транзисторным мостом) в силовые напряжения, подаваемые на двигатель.

Совокупность датчика положения ротора и электронного узла в ВД и БДПТ можно с определённой долей достоверности сравнить с щёточно-коллекторным узлом ДПТ. Однако следует помнить, что двигатели редко применяются вне электропривода. Таким образом, электронная аппаратура характерна для ВД почти в той же степени, что и для ДПТ.

Популярные статьи  как выбрать погружной блендер для дома

Статор

Основная статья: Статор

Статор имеет традиционную конструкцию. Он состоит из корпуса, сердечника из электротехнической стали и медной обмотки, уложенной в пазы по периметру сердечника. Обмотка разбита на фазы, которые уложены в пазы таким образом, что пространственно сдвинуты друг относительно друга на угол, определяемый числом фаз. Известно, что для равномерного вращения вала двигателя машины переменного тока достаточно двух фаз. Обычно синхронные машины, применяемые в ВД, трёхфазные, однако встречаются также и ВД с четырёх- и шестифазными обмотками.

Ротор

Основная статья: Ротор (техника)

По расположению ротора вентильные двигатели делятся на внутрироторные (англ. inrunner) и внешнероторные (англ. outrunner).

Ротор изготавливается с использованием постоянных магнитов и имеет обычно от двух до шестнадцати пар полюсов с чередованием северного и южного полюсов.

Для изготовления ротора раньше использовались ферритовые магниты, что определялось их распространённостью и дешевизной. Однако такие магниты характеризуются низким уровнем магнитной индукции. В настоящее время интенсивно используются магниты из сплавов редкоземельных элементов, поскольку они позволяют получить более высокий уровень магнитной индукции и уменьшить размер ротора.

Датчик положения ротора

Основная статья: Датчик положения ротора

Датчик положения ротора (ДПР) реализует обратную связь по положению ротора. Его работа может быть основана на разных принципах — фотоэлектрическом, индуктивном, трансформаторном, на эффекте Холла и проч. Наибольшую популярность приобрели датчики Холла и фотоэлектрические датчики, обладающие низкой инерционностью и обеспечивающие малые запаздывания в канале обратной связи по положению ротора.

Обычно фотоэлектрический датчик содержит три неподвижных фотоприёмника, между которыми находится вращающаяся маска с рисками, жёстко закреплённая на валу ротора ВД. Таким образом, ДПР обеспечивает информацию о текущем положении ротора ВД для системы управления.

Система управления

Система управления содержит микроконтроллер, контролирующий силовой инвертор согласно заданной программе управления. В качестве силовых ключей инвертора обычно применяют транзисторы MOSFET (ВД малых и средних мощностей) или IGBT (ВД средних и больших мощностей), реже тиристоры.

Основываясь на информации, полученной от ДПР, микроконтроллер формирует ШИМ-сигналы, которые усиливаются инвертором и подаются на обмотку синхронной машины.

Принцип работы коллекторного двигателя

Коллекторный двигатель переменного тока 220 Вольт и мотор постоянного тока, преобразуют электрическую энергию в физическую силу. Создание физической силы осуществляется путём раскручивания якоря, установленного на двух подшипниках в корпусе мотора.

Ротор и статор силового агрегата имеют обмотки. Они изготовлены из провода. Во избежание замыкание витков обмотки между собой провод выполнен в изолирующей оболочке. Напряжение подается на обмотку статора при помощи провода.

Якорь коллекторного мотора подвижный. Для передачи напряжения на обмотку якоря используется коллектор.

Бесколлекторный двигатель

Он выполнен в виде медных контактов. На них передаётся напряжение через графитовые щетки. Такая конструкция позволяет передавать напряжение на обмотку якоря независимо от скорости его вращения.

При прохождении электрического тока через обмотки возникает магнитное поле. Обмотка якоря имеет магнитное поле противоположной полярности полю обмотки статора. Под воздействием электромагнитных полей разной полярности якорь двигателя начинает вращаться.

ВНИМАНИЕ: Коллекторный двигатель может быть использован в качестве генератора постоянного тока

Плюсы и минусы сравниваемых двигателей

Электродвигатели с коллектором применяются в детских игрушках, моделях автомобиля, судомоделировании и т.п. Более мощные устройства с обмоткой возбуждения применяются в автомобилестроении, бытовой технике, в токарном станке или сверлильном и т.д.

Широкое применение обусловлено:

  • Невысокой ценой.
  • Простотой управления. Для регулировки скорости достаточно иметь реостат, а для осуществления реверса – изменить полярность в цепи возбуждения или якоря.
  • Можно подключать непосредственно к питающей сети.
  • Скорости вращения ротора можно менять в широком диапазоне.
  • Небольшие пусковые токи.

Но при простоте устройства коллекторные двигатели имеют недостатки:

  • Невысокий КПД.
  • Ограниченный срок службы.
  • Необходимость в постоянном обслуживании.
  • Невысокая надежность устройства.

При этом такие двигатели применяются не во всех отраслях промышленности. Их нельзя использовать во взрывоопасных помещениях. При эксплуатации на высоких скоростях быстро выходит из строя коллектор и щетки.

Бесколлекторный двигатель

В результате происходит снижение мощности, а токоподводящие щетки начинают искрить. Такое конструктивное отличие приводит к быстрому выходу из строя ламелей коллектора, создаются помехи в радиоаппаратуре.

Щетки приходится менять, а коллектор протачивать, что сокращает срок службы двигателя. Это является основным недостатком таких устройств.

В бесколлекторных электродвигателях отсутствует коллектор. В этом состоит отличие бесеколлекторных двигателей от коллекторных, в связи с чем и отсутствуют указанные выше недостатки.

Достоинствами таких электрических машин являются:

  • Отсутствие трущихся частей позволяет сократить потери мощности на трение. Не требуется постоянно следить за состоянием щеток, так как они отсутствуют. Это отличие позволяет увеличить межремонтный период.
  • Возможность использования корпуса в качестве рабочего органа. Эта конструктивная разница позволяет применять механизмы непосредственно в качестве колес.
  • Бесколлекторные электродвигатели, в отличие от коллекторных более долговечны. При этом они менее подвержены перегреву, т.к. отсутствует коллектор и щетки, которые в процессе работы сильно нагреваются.
  • Мгновенно набирают обороты.
  • Могут применяться во всех отраслях промышленности, в пожаро- и взрывоопасных помещениях. Из-за отсутствия коллектора не возникает искрения, чем они и лучше.

Но у данного типа двигателя имеется существенный недостаток: бесколлекторные модели можно использовать только с драйвером-коммутатором. С помощью этого устройства задаются режимы работы, скорость и направление вращения. При этом стоимость бесколлекторных двигателей значительно выше. Разница в стоимости может быть значительной. Это то, чем отличаются они от устройств с коллектором.

Малый вес и высокая мощность — это то, что лучше сочетается в приборах с дистанционным управлением, например, для квадрокоптера, где от веса и КПД зависит дальность и время полёта.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Лампы для дома: разновидности, формы, современные модели
Виды ламп освещения
Бесколлекторный двигатель