Удельное сопротивление алюминия

Ослабление винтов клеммной колодки вследствие повышения температуры

Для клеммных зажимов, которые должны выдерживать высокие температуры, влияние температуры является критически важным параметром, который недостаточно учтен в действующих стандартах. Наиболее критическим моментом является ослабление клеммных зажимов. Этот фактор способствует увеличению сопротивления контакта между клеммным зажимом и проводом, что приводит к локальному нагреву вплоть до воспламенения находящихся рядом горючих материалов. Такое ослабление имеет четыре причины:

Деформация клеммного зажима при его расширении ослабляет затяжку

. Такая деформация, как правило, обратима, когда температура падает, и может быть компенсирована за счет упругости клеммного зажима или пружины, расположенной между зажимным винтом и проводом.

Деформация клеммного зажима за счет изменения кристаллической структуры металла, аналогичного отжигу

. Такой вид деформаций, как правило, является необратимым.

Деформация медного провода, который становится вязким под действием нагрева

. Такая деформация, как правило, необратима, но ее можно избежать, используя провода, стойкие к нагреву, например из никеля.

Ослабление зажимного винта в результате последовательных циклов нагрева и охлаждения

между различными материалами.

Существуют два решения, которые можно реализовать отдельно или совместно.

Вставить упругую металлическую деталь между винтом и проводом.

Использовать систему автоматической блокировки винтов, вызванной деформацией клеммного зажима при затяжке.

Среднее изменение момента затяжки винтов клеммной колодки после короткого* максимума температуры. Момент затяжки при 20° C принимается за 100% (клеммные зажимы затягиваются на стальном стержне с максимально допустимым для клеммного зажима номинальным диаметром)

Удельное сопротивление алюминия

При температуре выше 600° C нельзя использовать винты из никелированной стали, даже в течение короткого времени, потому что окисление винта приводит к его блокировке. При более высоких температурах можно использовать только винты из нержавеющей стали или никеля, которые сохраняют работоспособность, что позволяет, при необходимости, их снять и заменить.

Среднее изменение момента затяжки винтов клеммной колодки после длительного воздействия температуры 230° C. За 100% принято усилие затяжки при температуре 20° C. (Клеммные зажимы затягиваются на стальном стержне с максимально допустимым для клеммного зажима номинальным диаметром.)

Винты из никелированной стали, используемые на стальных или латунных клеммных зажимах, выдерживают постоянную температуру 230° C без блокировки и без аномального окисления

Соединение медных и алюминиевых проводов

В последнее время в быту и промышленности начало использоваться электрооборудование все более высокой мощности. Во времена СССР проводка изготавливалась в основном из дешевого алюминия. Новым требованиям ее эксплуатационные характеристики, к сожалению, уже не соответствуют. Поэтому сегодня в быту и в промышленности очень часто алюминиевые провода меняются на медные. Основным преимуществом последних, помимо тугоплавкости, является то, что при окислительном процессе их токопроводящие свойства не уменьшаются.

Часто при модернизации электросетей алюминиевые и медные провода приходится соединять. Делать это напрямую нельзя. Собственно, электропроводность алюминия и меди различается не слишком сильно. Но только у самих этих металлов. Окислительные же пленки у алюминия и меди свойства имеют неодинаковые. Из-за этого значительно снижается проводимость в месте соединения. Окислительная пленка у алюминия отличается гораздо большим сопротивлением, чем у меди. Поэтому соединение этих двух разновидностей проводников должно производиться исключительно через специальные переходники. Это могут быть, к примеру, зажимы, содержащие пасту, защищающую металлы от появления окиси. Данный вариант переходников обычно используется при соединении проводов на улице. В помещениях чаще применяются ответвительные сжимы. В их конструкцию входит специальная пластина, исключающая прямой контакт между алюминием и медью. При отсутствии таких проводников в бытовых условиях вместо скручивания проводов напрямую рекомендуется использовать шайбу и гайку в качестве промежуточного «мостика».

Таблица удельных сопротивлений проводников

Расчет заземления

В некоторых ситуациях с расходами не считаются. Военную и космическую технику создают с применением проводников из драгоценных металлов. Такие решения помогают уменьшить сечение и вес, повысить стойкость к радиационным и другим особым воздействиям.

Данные для расчета электрических параметров проводников с учетом изменения температуры

Материал Удельное сопротивление (в Ом на мм кв./ м), замеренное при комнатной температуре (+0°C) Поправочный температурный коэффициент (ПК)
Медь 0,0176 0,004
Алюминий 0,0278 0,0045
Сталь 0,13 0,0063
Никелин 0,43-0,45 0,0072
Латунь 0,04 0,002
Нихром 0,98 0,0003
Вольфрам 0,0612 0,00047

Применение нержавеющей стальной проволоки помогает увеличить прочность при одновременной оптимизации себестоимости. Для улучшения антикоррозийных свойств применяют специальные добавки. Они повышают сопротивление проводника из стали почти в 10 раз, по сравнению с медным аналогом.

В любом случае особое значение имеют конкретные условия в процессе использования, а также назначение изделий. Никель, например, проявляет ферромагнитные свойства при чрезвычайно низких температурах ниже порогового значения «точки Кюри» (-358 0°C). Кремний, который применяют для изготовления микросхем и транзисторов, обладает особыми параметрами полупроводника.

Удельное сопротивление различных проводников

Как бы то ни было, а при расчетах используется ρ именно в нормальных условиях. Приведем таблицу, по которой можно сравнить эту характеристику у разных металлов:

металл удельное сопротивление, Ом·м температурный коэффициент, 1/°С* 10^-3
медь 1,68*10^-8 3,9
алюминий 2,82*10^-8 3,9
железо 1*10^-7 5
серебро 1,59*10^-8 3,8
золото 2,44*10^-8 3,4
магний 4,4*10^-8 3,9
олово 1,09*10^-7 4,5
свинец 2,2*10^-7 3,9
цинк 5,9*10^-8 3,7

Как видно из таблицы, лучший проводник — это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. Из таблицы становится понятно, почему проводка в домах либо медная, либо алюминиевая.

В таблицу не включен никель, у которого, как мы уже сказали, немного необычный график зависимости у. с. от температуры. Удельное сопротивление никеля после повышения температуры до 400 градусов начинает не расти, а падать. Интересно он ведет себя и в других сплавах замещения. Вот так ведет себя сплав меди и никеля в зависимости от процентного соотношения того и другого:

Популярные статьи  Как получить электричество из картошки

А этот интересный график показывает сопротивление сплавов Цинк — магний:

В качестве материалов для изготовления реостатов используют высокоомные сплавы, вот их характеристики:

сплав удельное сопротивление
манганин 4,82*10^-7
константан 4,9*10^-7
нихром 1,1*10^-6
фехраль 1,2*10^-6
хромаль 1,2*10^-6

Это сложные сплавы, состоящие из железа, алюминия, хрома, марганца, никеля.

Что касается углеродистых сталей, то оно составляет примерно 1,7*10^-7 Ом · м.

Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро — в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).

Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением

и обозначается греческой буквойρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r

– сопротивление проводника в омах;ρ – удельное сопротивление проводника;l – длина проводника в м;S – сечение проводника в мм².

Пример 1.

Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2.

Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3.

Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4.

Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5.

Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления

и обозначается буквой α.

Если при температуре t

0 сопротивление проводника равноr 0 , а при температуреt равноr t , то температурный коэффициент сопротивления

Примечание.

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t

r t

=r 0 .

Пример 6.

Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t

=r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7.

Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Что такое удельное сопротивление

Понятие удельного электрического сопротивления вещества следует из определения электрического сопротивления проводника R с геометрическими размерами L (длина) и S (поперечное сечение):

$ ρ = R * { S \over L } $ (1).

Удельное электрическое сопротивление меди получают, пользуясь результатами измерений вольт-амперных U(I) характеристик на образцах меди различных размеров. Измерив вольтметром напряжение U, амперметром величину тока I, и применив формулу закона Ома, рассчитывают величину сопротивления образца меди:

$ R = { U \over I } $ (2).

Далее, с помощью формулы (1), вычисляется величина ρ.

Рис. 1. Таблицы удельных сопротивлений различных металлов.

Медь – это один из самых первых металлов, который человек научился добывать и обрабатывать. Период с IV по III тысячелетие до н.э. называют медным веком. Считается, что в это время люди научились делать первые предметы и орудия труда из меди. Применение меди в электротехнике началось только в начале XIX века.

Удельное сопротивление меди и алюминия для расчетов

Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.

Недавно я изучал один очень интересный ГОСТ:

ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.

Популярные статьи  Заземление своими руками

Советую почитать данный документ, т.к. там много чего полезного.

В этом документе приводится формула для расчета потери напряжения и указано:

р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм2/м для меди и 0,036 Ом · мм2/м для алюминия;

Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.

Стоит заметить, что все табличные значения приводят при температуре 20 градусов.

А какие нормальные условия? Я думал 30 градусов Цельсия.

Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.

R1=R0

R0 – сопротивление при 20 градусах Цельсия;

R1 — сопротивление при Т1 градусах Цельсия;

Т0 — 20 градусов Цельсия;

α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);

R1/R0=1,25

1,25=1+α (Т1-Т0)

Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.

Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.

Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.

В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм2/м, а для алюминия – 0,028 Ом · мм2/м.

Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог.  По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.

А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.

Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.

Как вы считаете, при какой температуре нужно считать потери напряжения: при -90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?

Тонкие плёнки

Сопротивление тонких плоских плёнок (когда её толщина много меньше расстояния между контактами) принято называть «удельным сопротивлением на квадрат», Этот параметр удобен тем, что сопротивление квадратного куска проводящей плёнки не зависит от размеров этого квадрата, при приложении напряжения по противоположным сторонам квадрата. При этом сопротивление куска плёнки, если он имеет форму прямоугольника, не зависит от его линейных размеров, а только от отношения длины (измеренной вдоль линий тока) к его ширине L/W: где R — измеренное сопротивление. В общем случае, если форма образца отличается от прямоугольной, и поле в плёнке неоднородное, используют метод ван дер Пау.

Медь

Cu — медь.

Примеры применения

Провода.Гибкие многожильные провода различного сечения.Гибкие тоководы. Теплоотводы. Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди, он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор с развитым оребрением уже охлаждает сам стержень.При изготовлении фольгированных печатных плат.Техника сверхвысокого вакуума.Аноды рентгеновских трубок.

Интересные факты о меди

  • Медь — достаточно дорогой металл, поэтому недобросовестные производители стараются экономить на нем. Занижают сечение проводов (когда написано 0,75 мм2, а фактически 0,11 мм2). Окрашивают алюминий «под медь» в обмотках, внешне обмотка выглядит как медная, а стоит соскрести изоляцию — оказывается, что она сделана из алюминия. Этим грешат и китайские, и отечественные производители, кабель сечением 2,5 мм2 вполне может оказаться сечением 2,3 мм2, поэтому запас прочности и входной контроль не будут лишними. Разумеется, надежность контакта в электроарматуре жилы сечением 2,3 мм2, рассчитанной на жилу 2,5 мм2, будет невысокой.
  • Медь окрашивает пламя в зелёный цвет, это свойство использовали для обнаружения меди в руде, когда не был доступен химический анализ. Зеленый след в пламени — показатель наличия меди. (но не всегда, зеленую окраску пламени могут давать ионы бора)
  • Медь — мягкий металл, но если добавить к меди хотя бы 10% олова, получается твёрдый, упругий сплав — бронза. Именно освоение получения бронзы послужило названием к исторической эпохе — бронзовому веку. Добавка к меди бериллия дает бериллиевую бронзу — прочный упругий сплав, из которого изготавливают пружинящие контакты.
  • Медь — один из немногих мягких металлов с высокой температурой плавления, поэтому из меди изготавливают уплотнительные прокладки, например для высокотемпературной или вакуумной техники. Например, уплотнительная прокладка пробки картера двигателя автомобиля.
  • При механической обработке (например волочении) медь уплотняется и становится жёсткой. Для восстановления исходной мягкости и пластичности медь «отжигают» в защитной атмосфере, нагревая до 500-700 °C и выдерживая некоторое время. Поэтому некоторые медные изделия твёрдые, а некоторые мягкие, например медные трубы.
  • Медь не даёт искр. Для работы во взрывоопасных местах, например на газопроводе, используют искробезопасный инструмент, стальной инструмент покрытый слоем меди или инструмент изготовленный из сплавов меди — бронз. Если таким инструментом случайно чиркнуть по стальной поверхности он не даст опасных искр.
  • Так как температурный коэффициент сопротивления для чистой меди известен, из меди изготавливают термометры сопротивления (тип ТСМ — Термометр Сопротивления Медный, есть еще ТСП — Термометр Сопротивления Платиновый). Термометр сопротивления — это точно изготовленный резистор, навитый из медной проволоки. Измерив его сопротивление, можно по таблице или по формуле определить его температуру достаточно точно.

Удельное сопротивление металлов. Таблица

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

Популярные статьи  Сельсины – назначение и конструкция

где:R — сопротивление провода (Ом)ρ — удельное сопротивление металла (Ом.m)L — длина провода (м)

А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м.  Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:

Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов.

Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов.

Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Отправить сообщение об ошибке.

  • Предыдущая записьВодопоглощение — таблицы электронного справочника по химии, содержащие Водопоглощение
  • Следующая записьПостоянная решетки — таблицы электронного справочника по химии, содержащие Постоянная решетки

×
Рекомендуем посмотреть

Энергия ионизации — таблицы электронного справочника по химии, содержащие Энергия ионизации

Энергия диссоциации — таблицы электронного справочника по химии, содержащие Энергия диссоциации

Подписка на рассылку

Несмотря на то, что медь – один из лучших проводников электричества, она обладает сопротивлением. Оно незначительно – поэтому, например, при прокладке трасс небольшой длины (например, в квартире) им можно пренебречь.

Однако при прокладке трасс большой длины сопротивление медного кабеля имеет решающее значение – поскольку никому не хочется получить на «выходе» значительно меньшее напряжение, чем на «входе».

Сопротивление жилы медного кабеля

Существует три способа узнать сопротивление жилы медного кабеля – получить его из таблицы, рассчитать или же измерить специальным прибором (омметром). Первый вариант наиболее прост, но при этом не слишком точен. Таблицы, в которых указывается номинальное электросопротивление токоведущих жил медного кабеля в расчёт на 1 км длины, приведены в ГОСТ 22483-2012.

Дело в том, что табличные величины сопротивления указываются для кабелей определённого сечения и с определённым составом проводника. На практике же выясняется, что состав медного сплава может отличаться от нормативов. Особенно если речь заходит о некачественных, бюджетных кабелях.

Второй способ получения сопротивления медного кабеля – расчёт по формуле. Потребуется указать следующие значения:

  • Удельное сопротивление меди ρ, которое варьируется в зависимости от процентного содержания меди в сплаве от 0,01724 до 0,018 Ом×мм²/м;
  • Длину медного кабеля в метрах;
  • Сечение кабеля S в мм².

Далее используется следующая формула:

Полученное сопротивление R– это сопротивление всего проводника на произвольную длину. Так что этой формулой удобно пользоваться при расчётах как длинных, так и коротких линий.

Якорь И третий вариант – это измерить сопротивление проводника самостоятельно. Он наиболее точен, поскольку показывает фактическое значение. Тем не менее, главный минус этого способа заключается в трудоёмкости.

Измерение электросопротивления токоведущих жил производится одинарным, двойным или одинарно-двойным мостом с постоянным напряжением. Конкретная методика и принципиальные схемы описываются ГОСТ 7229-76.

Сопротивление изоляции кабелей медных

Измерение сопротивления изоляции кабелей с медными токоведущими жилами является частью испытаний кабельных линий. Эти процедуры проводятся при положительной температуре окружающего воздуха.

Дело в том, что в изоляции кабеля могут находиться микрокапли влаги. При отрицательных температурах они замерзают. Кристаллы льда, в свою очередь, являются диэлектриками, то есть ток они не проводят. И, как следствие, измерения медных кабелей при отрицательной температуре не выявят наличия вкраплений влаги в изоляции.

Для измерения сопротивления изоляции используется мегаомметр. Нормативы подразумевают, что его погрешность должна составлять не более 0,2%. Так, одним из допускаемых соответствующим госреестром устройств является SonelMIC-2500 – гигаомметр, предназначенный для измерения сопротивления изоляции, степени её увлажнённости и старения.

Удельное сопротивление алюминияВ общем виде процедура измерения сопротивления изоляции медных кабелей проводится следующим образом:

  1. С кабеля снимается напряжение. Его отсутствие проверяется специальным устройством;
  2. Устанавливается испытательное заземление на стороне, где проводится измерение;
  3. Жилы с другой стороны разводятся на значительное расстояние друг от друга;
  4. На каждую жилу подаётся напряжение. На кабели с изоляцией из бумаги, ПВХ, полимеров и резины подаётся постоянное напряжение, а на кабели с изоляцией из сшитого полиэтилена – переменное;
  5. В течение одной минуты замеряется сопротивление изоляции.

Измерение проходит следующим образом:

  • Предположим, измеряется сопротивление изоляции жилы «А»;
  • Тогда испытательное заземление подключается к жилам «В» и «С»;
  • Один конец мегаомметра подключается к жиле «А», второй – к заземляющему устройству («земле»).

Стоит отметить, что конкретная методика измерения зависит от типа кабеля – низковольтный силовой, высоковольтный силовой, контрольный. Вышеприведённый алгоритм имеет общий характер.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Нагрузка на ноль в трехфазной сети
обрыв нуля в трехфазной сети последствия
Удельное сопротивление алюминия