Виды ламп накаливания

Технические характеристики ламп для дома и квартиры

Технических характеристик у современного источника света довольно много. Они указываются на упаковке. В зависимости от модели перечень может быть длиннее или короче. Самый длинный список у светодиодных светильников.

Пример маркировки лампочек для дома на упаковке

Пример маркировки лампочек для дома на упаковке

Мощность фактическая (единица измерения — Вт). Обозначает, сколько нужно электричества для свечения. Чем мощность выше, тем ярче свет, тем больше электроэнергии нужно.

Конструкция разных типов источников света предполагает одинаковую яркость при различной мощности. Сравнительная характеристика приведена в таблице.

Чтобы не запутаться, производитель часто пишет на упаковке эквивалентную мощность в сравнении с более привычными лампами накаливания.

Световой поток (единица измерения – лм). Характеризует яркость свечения. Величина помогает непосредственно оценить яркость света. Удобно использовать параметр для сравнения мощностей разных типов источников света. Как видно из таблицы, световой поток в 1200 лм можно достичь при помощи 100 Вт лампы накаливания, 30 Вт люминесцентной или 15 Вт светодиодной. Таким образом, очевидно, что при равной яркости led экономичнее ламп накаливания в 6,5 раз.

Цветовая температура (единица измерения – градус К). Описывает цветовую тональность. Разделяют теплый свет (2700-3300 К), нейтральный (3300-5000 К) и холодный (5000-6500 К). Лампы накаливания и «галогенки» светят только теплым светом. У люминесцентных и светодиодных моделей диапазон цветовых температур гораздо шире: от теплых до холодных тонов.

Цветовая температура

Это очень важный параметр для комфортного освещения. Теплые цвета способствуют расслаблению и отдыху. Холодные, наоборот, бодрят и настраивают на рабочий лад. Теплые цвета хорошо подходят для спален и мест отдыха в квартире. Нейтральные лучше использовать в кухнях, рабочих зонах, ванных комнатах.

Цветопередача (индекс цветопередачи). Обозначается на упаковке буквами CRI или Ra. Измеряется в долях от 1 до 100. Чем выше индекс, тем меньше искажение цветов от источника света. Для здоровья глаз рекомендуются лампы с цветопередачей выше 80.

Габаритные размеры (единица измерения – мм). Параметр важен при замене ламп накаливания на другие типы, так как led и люминесцентные обычно больше. Новая модель может не подойти к старому плафону или некрасиво выдаваться наружу.

Угол рассеивания света. Это угол, на который расходятся лучи от источника света. Параметр актуален для точечных источников света и светодиодных моделей. Чем выше значение, тем больше освещаемая площадь. У спотов угол рассеивания равен 30⁰, у обычных ламп от 90⁰ до 360⁰ в зависимости от модели.

Угол рассеивания света

Срок службы (единица измерения – часы). Количество часов, которое светит лампа. Обычно указывается для led и ЛЛ. Часто производитель обозначает количество часов при соблюдении определенных условий работы – это также прописывается на упаковке. Имейте в виду, что из-за конструктивных особенностей у led и ЛЛ с течением времени яркость падает. Это связано с деградацией светодиодов и люминофора соответственно.

Также на упаковке может быть указана информация о рабочем диапазоне напряжений, цоколе, коэффициенте пульсации (не выше 35%:чем он меньше, тем полезнее для глаз), возможность диммирования.

Что такое лампа накаливания

То есть физическое явление излучения света вызвано нагревом нити накала.

Краткая история лампы накаливания

Первые лампы

Лампы накаливания являются оригинальной формой электрического освещения и используются уже более 100 лет. В то время как Томас Эдисон считается изобретателем лампы накаливания, есть ряд людей, которые изобрели компоненты и прототипы лампочки задолго до Эдисона.

В 1802 году Хамфри Дэви изобрел первый электрический свет. Он экспериментировал с электричеством и изобрел электрическую батарею. Когда он подсоединил провода к своей батарее и кусочку углерода, углерод засветился, производя свет. Его изобретение было известно как электрическая дуговая лампа. И хотя она производила свет, углерода хватало ненадолго, и свет был слишком ярким для практического использования.

Одним из первооткрывателей был также британский физик Джозеф Уилсон Свон, который фактически получил первый патент на лампочку накаливания с углеродной нитью накаливания в 1878 году. Дом Свона был первым в мире, освещенным электрической лампочкой. Свон разработал более долговечную лампочку с использованием обработанной хлопчатобумажной нити, которая также устранила проблему раннего почернения лампы.

Эдисону часто приписывают данное изобретение, потому что его версия смогла превзойти более ранние версии благодаря сочетанию трех факторов: эффективный материал накаливания, более высокий вакуум и высокое сопротивление, которое сделало распределение электроэнергии от централизованного источника экономически выгодным.

В 1906 году компания «Дженерал Электрик» первой запатентовала метод изготовления вольфрамовых нитей для использования в лампах накаливания. Сам Томас Эдисон знал, что вольфрам окажется лучшим выбором для нитей накаливания.В 1910 Уильям Дэвид Кулидж усовершенствовал процесс производства, чтобы получить самые долговечные вольфрамовые нити.В 1920-е годы были выпущены первая лампа с матовым покрытием и лампа с регулируемой мощностью для автомобильных фар и неонового освещения.1930-е ознаменовались изобретением маленьких одноразовых фотовспышек для фотографии и люминесцентной лампы для загара.1950-е годы — производство кварцевого стекла и галогенной лампы накаливания.В 1990-е годы начинают продаваться лампы с длительным сроком службы и компактные люминесцентные лампы.

Современные лампы накаливания не являются энергоэффективными — менее 10% электроэнергии, подаваемой в лампу, преобразуется в видимый свет. Оставшаяся энергия теряется в виде тепла. Однако эти неэффективные лампочки по-прежнему широко используются сегодня благодаря таким преимуществам, как:

  • широкая и недорогая доступность;
  • простое встраивание в электрические системы;
  • возможность работы при низком напряжении, например, в устройствах с батарейным питанием;
  • широкий ассортимент формы и размера.

К несчастью для лампы накаливания, законодательство многих стран, включая США, предписывает постепенно отказаться от нее в пользу более энергоэффективных вариантов, таких как компактные люминесцентные лампы и светодиодные лампы. Однако эта политика встретила значительное сопротивление из-за низкой стоимости ламп накаливания, мгновенной доступности света и опасений загрязнения ртутью из-за люминесцентных ламп. Однако теперь значительно снизились цены на светодиоды. 

Светодиодные лампы

Достоинства:

1. Световая отдача светодиодных систем уличного освещения с резонансным источником питания достигает 110 люменов на ватт, что сравнимо с отдачей натриевых газоразрядных ламп — 160 люмен на ватт.

2. Средний срок службы светодиодных систем освещения может быть доведён до 50 тысяч часов, что в 50-200 раз больше по сравнению с массовыми лампами накаливания и в 4-16 раз больше, чем у большинства люминесцентных ламп.

3. Возможность получать различные спектральные характеристики без применения светофильтров (как в случае ламп накаливания).

4. Безопасность использования.

5. Малые размеры.

6. Высокая прочность.

7. Отсутствие ртутных паров (в отличие от газоразрядных люминесцентных ламп и других приборов), что исключает отравление ртутью при переработке и при эксплуатации.

8. Малое ультрафиолетовое и инфракрасное излучение.

9. Незначительное тепловыделение (для маломощных устройств).

10. Устойчивость к вандализму.

Недостатки:

1. Основной недостаток — высокая цена. Отношение цена/люмен у сверхъярких светодиодов в 50-100 раз больше, чем у обычной лампы накаливания.

2. Напряжение питания светодиода значительно меньше напряжения питания обычных ламп накаливания. Поэтому светодиоды соединяют последовательно или используют преобразователи напряжения.

3. Для питания одиночного светодиода от питающей сети необходим низковольтный источник питания постоянного тока, тоже с радиатором, что дополнительно увеличивает объём светильника, а его наличие дополнительно снижает общую надёжность и требует дополнительной защиты. Поэтому многие разработчики ограничиваются выпрямителем, а светодиоды включают последовательно.

4. Высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты без сглаживающего конденсатора, при его наличии пульсации малы.

5. Спектр отличается от солнечного. Вместе с тем, этот недостаток по сравнению с люминесцентными лампами менее значителен, так как благодаря особенностям человеческого восприятия и при правильно подобранных люминофорах это незаметно.

Популярные статьи  Виды реле

Светильники со светодиодными лампами.

Все типы светильников можно разделить на три группы:

1. Светодиодные светильники для улиц, парков, дорог, для архитектурного освещения. Выполняются в защищенном от влаги и пыли корпусе, кроме того, корпус обычно выполняет роль теплоотвода и изготавливается из хорошо проводящих тепло материалов.

2. Светильники для производственных целей, ЖКХ и офисов. К изделиям предъявляются повышенные требования к качеству освещения, в том числе к стабильности и цветопередаче, условиям эксплуатации.

3. Светильники для бытовых нужд обычно выпускаются невысокой мощности, но должны удовлетворять многочисленным требованиям к качеству освещения, электробезопасности, пожароопасности и, в немалой степени, — к внешнему виду. Зачастую бытовые светильники имеют сменные лампы.

Кроме указанных применений, светодиодные светильники хорошо подходят для освещения музеев и раритетов, поскольку спектр лампы не содержит ультрафиолетовой составляющей.

Характеристики

Лампы накала обладают такими характеристиками:

Характеристики ламп разной мощности

Принцип действия

Суть работы всех ЛН в использовании принципа нагревания вещества при прохождении сквозь него тока. В этом случае повышается температура нити накала после замыкания электрической цепи. Как результат запускается эффект электромагнитного теплового излучения. Чтобы оно стало видимым для человека, температура нагревания должна превышать 570 ⁰C – это начало красного свечения.

Внутри лампы нить накаливания разогревается до 2000–2800 ⁰С. При разогревании до такой температуры на воздухе вольфрам превращается в оксид – на нем образуется белый налет, поэтому внутрь колбы закачиваются нейтральные газы. На заре развития данной технологи освещения в лампочке создавался вакуум, сейчас это практикуют только для изделий минимальной мощности. При закручивании в патрон цоколя лампы и замыкании цепи запускается процесс накаливания нити, и она дает свет.

Конструкция

Конструкция ламп накаливания Устройство всех ЛН схоже, в них содержаться:

  1. Рабочая часть – нить из вольфрамовой проволоки, свернутая в спираль. Удельное сопротивление этого металла в 3 раза больше, чем у меди. Вольфрам используется, потому что он тугоплавкий и можно максимально уменьшить сечение нити. За счет этого повышается электрическое сопротивление. Питание спираль получает от электродов.
  2. Спираль удерживают элементы из молибдена. Он также тугоплавкий, имеет низкий коэффициент теплового расширения.
  3. Колба из стекла. Внутри ее инертный газ, что не дает сгореть нити накала. Именно поэтому такие лампы не вакуумные, именно газ создает давление внутри колбы.
  4. Электроды соединяются с контактными элементами цоколя с помощью медных проводников.
  5. Цоколь. Такой элемент есть во всех рассматриваемых лампочках, за исключением специальных автомобильных. Резьба на цоколе и его размер могут быть различными.

Цоколь

Самые привычные для нас лампочки с резьбовым цоколем, размеры их стандартизированы. Для моделей, что используются в бытовых условиях, востребованы Е 14, Е 27 и Е 40. Реже используются для таких источников света без резьбы, но они распространены в автомобильном деле.

Цоколи ламп накаливания

Маркировка

Разобраться в маркировке ламп накаливания несложно, основные обозначения, которые можно встретить:

  • Специфика конструкции и свойства. «Б» указывает на аргоновую биспиральную ЛН, «В» – на содержание внутри вакуума, «Г» – на то, что в лампу закачан газ, «БК» – биспиральная криптоновая, «МЛ» – молочный цвет колбы, «МТ» – матовая, «О» – опаловая.
  • О назначении лампочки расскажет вторая часть маркировки. «Ж» – железнодорожная, «КМ» – коммутационная, «СМ» – для самолетов, «А» – для автомобилей, «ПЖ» – лампа высокой мощности для использования в прожекторах.
  • Форму обозначают так: «А» – абажур, «Д» – декоративная, «В» – витая.
  • Первые цифры – это номинальное напряжение.

Коэффициент полезного действия и долговечность

Существенные недостатки таких ламп – это небольшой срок эксплуатации и низкий коэффициент полезного действия. Под КПД подразумевается соотношение мощности и заметного человеку излучения. Как помним, нить разогревается до 2700 К, в этом случае ее КПД около 5%. Вся остальная энергия, которая, кстати, в полном объеме превращается в излучение, припадает на инфракрасный спектр, который невидим для человека. Мы воспринимаем его как тепло.

Теоретические повысить КПД до 20% можно, для этого следует увеличить температуру нити накала до 3400 К, получаемый свет в этом случае будет в 2 раза ярче, правда, срок эксплуатации уменьшается на 95%.

Если мощность снижать, то период эксплуатации ламп накаливания может увеличиваться в 5 и более раз. Уменьшение напряжения при этом снижает КПД, но использовать лампочку получиться в 1000 раз дольше. Этот эффект используется при создании надежного дежурного освещения. Конечно, это возможно, только если нет критических требований к освещенности.

Процесс перегорания лампы накаливания

Лампы накаливания

Лампа накаливания (ЛОН) — самый первый источник электрического света, который появился в домашнем обиходе. Она была изобретена еще в середине 19 в., и хотя с того времени претерпела немало реконструкций, сущность осталась без изменений. Любая лампа накаливания состоит из вакуумного стеклянного баллона, цоколя, на котором располагаются контакты и предохранитель, и нити накаливания, излучающей свет.

Лампа накаливания

Спираль накаливания сделана из вольфрамовых сплавов, которые легко выдерживают рабочую температуру горения +3200 °C. Чтобы нить мгновенно не перегорела, в современных лампах накачивают в баллон какой-нибудь инертный газ, например аргон.

Принцип работы лампы очень прост. При пропускании тока через проводник малого сечения и низкой проводимости часть энергии уходит на разогрев спирали-проводника, отчего тот начинает светиться в видимом свете. Несмотря на столь простое устройство, видов ЛОН существует огромное множество. Они различаются по форме и размерам.

Свет в лампе накаливания исходит от раскаленной вольфрамовой спирали

Декоративные лампы (свечи): баллон имеет вытянутую форму, стилизованную под обычную свечу. Как правило, используются в небольших светильниках и бра.

Окрашенные лампы: стекла баллонов имеют различный цвет с декоративными целями.

Лампа накаливания с матовым стеклом дает более мягкий и равномерный свет

Зеркальными лампами называют лампы, часть стеклянного баллона которых покрыта отражающим составом для направления света компактным пучком. Такие лампы чаще всего используют в потолочных светильниках, чтобы направлять свет вниз, не освещая потолка.

Лампы местного освещения работают под напряжением 12, 24 и 36 В. Они потребляют немного энергии, но и освещение соответствующее. Применяются в ручных фонарях, аварийном освещении и т. д. ЛОН по-прежнему остаются в первых рядах источника света, несмотря на некоторые недостатки. Их минусом является очень низкий КПД — не более 2–3 % от потребляемой энергии. Все остальное уходит в тепло.

Декоративная лампа-свеча с цоколем Е14

Второй минус заключается в том, что ЛОН небезопасны с противопожарной точки зрения. Например, обычная газета, если ее положить на лампочку в 100 Вт, вспыхивает примерно через 20 мин. Надо ли говорить, что в некоторых местах ЛОН нельзя эксплуатировать, например в маленьких абажурах из пластика или дерева. Кроме того, такие лампы недолговечны. Срок службы ЛОН составляет примерно 500–1000 ч. К числу плюсов можно отнести дешевизну и простоту монтажа. ЛОН не требуют каких-либо дополнительных устройств для работы, подобно люминесцентным.

Прожекторные лампы

Виды ламп накаливания
Рисунок 3. Лампы кинопроекционные:а – типа К6-30; б – типа К40-750

Ассортимент прожекторных ламп подразделяют на три группы: лампы для киноаппаратуры (ГОСТ 4019-74), лампы для прожекторов общего назначения (ГОСТ 7874-76) и лампы маячные (ГОСТ 16301-80). Все эти лампы имеют фиксировано расположенное концентрированное тело накала, которому стремятся придать максимальную габаритную яркость. Поэтому для большинства  ламп нормируют габаритные размеры тела накала и используют фокусирующие цоколи. Для большинства ламп этого ассортимента, кроме того, оговаривают положение их горения.

Для ламп, работающих в кинопроекционной аппаратуре (рисунок 3), приняты, как правило, небольшие напряжения, позволяющие изготовлять тело накала из фольфрамовой проволоки большого диаметра, что обеспечивает соответствие срока службы каждой лампы установленной средней продолжительности горения. У ламп, предназначенных для горения цоколем вверх, тело накала конструктивно удалено от ножки для исключения перегрева цоколя.

Прожекторные лампы изготовляют на напряжения: 50 В (для железнодорожного транспорта), 110 В (для судов речного и морского флота) и 127 и 220 В (общего назначения).  Типичные конструкции прожекторных ламп со слабо ограниченным положением при горении приведены на рисунке 4. На рисунке 5 показаны характерные конструкции прожекторных ламп в рабочем положении, имеющие ограничение по этому признаку. Некоторые лампы снабжены фокусирующими цоколями. На рисунках 4 – 6 дана принятая в стандартах на лампы накаливания система обозначения их основных размеров.

Популярные статьи  как работает электрический котел

Виды ламп накаливания

Рисунок 4. Лампы накаливания прожекторные общего назначения со слабо ограниченным положением при горении:а – для железнодорожных прожекторов на напряжение 50 В; б и в – для прожекторов общего назначения

Виды ламп накаливания

Рисунок 5. Лампы прожекторные с вертикальным положением горения:а – типа ПЖ110-500-2 в цилиндрической колбе с фокусирующим цоколем; б – типа ПЖ110-1000 с резьбовым цоколем; в – то же типа ПЖ220-500

Маячные лампы (рисунок 6) отличаются от прожекторных тем, что они используются в линзовых оптических системах с большими углами охвата, что исключает необходимость располагать тело накала в одной плоскости. При этом требуется лишь его достаточная компактность. Маячные лампы рассчитаны на напряжение от 6 до 110 В и мощности от 3 до 1000 Вт. Контроль правильности расположения тела накала относительно фиксирующих элементов фокусирующих цоколей осуществляется проектированием изображения тела накала в двух взаимно перпендикулярных плоскостях. Для всех типов маячных ламп нормируется срок службы каждой лампы, что связано с труднодоступностью их замены в аппаратуре.

Виды ламп накаливания

Рисунок 6. Лампы маячные с резьбовыми и штифтовыми цоколями:а – на напряжение 6 В; б – на напряжение 110 В

Классификация ламп накаливания

Лампы накаливания сегодня известны каждому, но среди них можно выделить и четыре подтипа:

  1. Вакуумные. В лампочках такого типа внутри колбы создаётся безвоздушное пространство. Считается, что они имеют меньшую светоотдачу, чем газонаполненные.
  2. Галогенные. Главное преимущество этих ламп — большой срок службы, который составляет 2000-4000 часов. Газонаполненная лампа сможет прослужить не более 1200 часов. Лампочки такого типа заполняются буферным газом, которым являются пары брома или йода.
  3. Криптоновые. Колба наполняется криптоном, который увеличивает светоотдачу осветительного прибора, позволяя при этом уменьшить размер колбы без потери яркости.
  4. Аргоновые. Внутри таких ламп содержится нейтральный газ аргон, который защищает вольфрамовую нить накаливания. Аргоновые лампы ценятся за долговечность и достаточный уровень яркости при невысокой стоимости.

Устройство лампы накаливания

Общие характеристики, область применения, преимущества и недостатки ламп накаливания

Основные характеристики ламп накаливания:

  1. Мощность. Этот параметр зависит от того, где используется осветительный прибор. Для бытовых нужд можно ограничиться лампой до 60 Вт, но существуют и модели с мощностью до 100 Вт и более.
  2. Температура накала. Нить во время работы может нагреваться до 2000-2800 градусов.
  3. Напряжение. Составляет от 220 до 330 Вольт.
  4. Светоотдача. От 9 до 19 Лм/1Вт.
  5. Размер и тип цоколя. Бывает резьбовой и штифтовой цоколи. Цоколь со штифтовым типом соединения редко применяется в быту, и чаще всего используется в автомобильной промышленности. Он может иметь один или два контакта. Существует три основных размера цоколей — Е14, Е27 и Е40. Цифра в обозначении соответствует диаметру в миллиметрах.
  6. Рабочий ресурс. 1000-4000 часов в зависимости от типа.

Лампы накаливания считаются самыми доступными из всех лампочек, которые сегодня предлагают магазины. Они выделяют много тепловой энергии и чувствительны к частым переключениям. Разберемся, чем хороши, а чем плохи данного типа лампы.

Преимущества:

  • доступность;
  • компактность;
  • при работе на переменном токе не видно мерцания;
  • свет нормально воспринимается человеческим глазом;
  • не требуют специальной утилизации;
  • не издают шума во время работы;
  • минимальный уровень УФ-излучения.

Недостатки:

  • низкий уровень светоотдачи;
  • малый срок службы;
  • высокое энергопотребление;
  • пожароопасность;
  • хрупкость.

Несмотря на недостатки, такие лампы по-прежнему активно используются для бытовых нужд. Кроме того, они бывают и транспортными, и применяться в оптике или другой подсветке транспортных средств. Лампы накаливания, покрытые тонким слоем алюминия, применяются для освещения торговых залов и магазинов. Иногда лампу накаливания все еще можно встретить в устройстве светосигнальных приборов, на сегодняшний день в этой сфере более распространены светодиодные.

Виды ламп накаливания

Лампочки с использованием вольфрамовой нити могут быть не только вакуумными. Устройство лампы накаливания различает несколько видов подобных осветительных приборов, каждый из которых используется в определенных отраслях. Они могут быть:

  • вакуумными, т. е. самыми простыми;
  • аргоновыми, либо азотно-аргоновыми;
  • криптоновыми, которые светят на 13–15% сильнее аргоновых;
  • ксеноновыми (чаще применяемыми в последнее время в фарах автомобилей и светящими в 2 раза ярче аргоновых);
  • галогенными – колба в лампе накаливания наполнена галогеном брома или йода. Свет в 3 раза ярче, чем у аргоновой, но эти лампы не терпят снижения напряжения и внешнего загрязнения стекла колбы;
  • галогенными с двойной колбой – с повышенной эффективностью работы галогенов по сбережению вольфрама в нити накаливания;
  • ксенон-галогенными (еще более яркими) – они наполнены помимо галогенов йода или брома еще и ксеноном, т. к. от того, какой газ находится в колбе, напрямую зависит то, сколько градусов составит нагрев лампы а, следовательно, зависит и ее яркость.

Виды ламп накаливанияГалогенная лампа с двойной колбой

Галогенные лампы

Галогенные лампы — это усовершенствованные лампы накаливания. Достоинством галогенных ламп является неизменно яркий свет, прекрасная передача цвета и возможность создания разнообразных световых оттенков.

Они известны умеренно высокой эффективностью, качеством света и высокой номинальной мощностью по сравнению с обычными лампами накаливания.

Как они работают?

Галогенная лампа функционирует точно так же, как лампа накаливания, за одним заметным исключением: цикл галогенов. В обычной лампе накаливания вольфрам медленно испаряется из горящей нити. Это вызывает почернение лампы, что снижает светоотдачу и снижает срок службы лампы.

Галогенные лампы в значительной степени способны устранить эту проблему, потому что галогенный газ химически реагирует с испаряемым вольфрамом, чтобы предотвратить его прилипание к стеклу. Остатки вольфрам возвращаются к нити накала, что также увеличивает срок службы лампы. Поскольку температура, требуемая для этой реакции, выше, чем в обычной лампе накаливания, галогенные лампы изготавливаются с использованием кварца.

Галогенные лампы используются в различных областях применения, как коммерческих, так и жилых. Их применяют в автомобильных фарах, освещении для диванных уголков, в шкафах, и настольных лампах.

2.2. Лампы накаливания Томского электролампового завода

2.2.1. Лампы общего назначения

Лампы предназначаются для светильников внутреннего и наружного освещения в сетях переменного тока с номинальным напряжением 220 В частотой 50 Гц.

Рисунок

Тип лампы

Напряжение, В

Мощность, Вт

Световой поток, лм

Срок службы, ч

Тип цоколя

Рис. 5, а

Б 230-240-100-1

235

100

1360

1000

B22d*

Б 230-240-100-1

235

100

1360

1000

E27

Рис. 5, б

Б 230-240-150*

235

150

2065

1000

B22d

Б 230-240-150*

235

150

2065

1000

E27

Рис. 5, в

Б 230-240-40-5

235

40

400

1000

E27

Б 230-240-40-5

235

40

400

1000

B22d*

Рис. 5, а

Б 230-240-60-1

235

60

710

1000

B22d

Б 230-240-60-1

235

60

710

1000

E27

Б 230-240-60-7

235

60

710

1000

E27

Б 230-240-60-7

235

60

710

1000

B22d

Б 230-240-75-1

235

75

940

1000

B22d*

Б 230-240-75-1

235

75

940

1000

E27

Рис. 5, б

Г 230-240-200-1

235

200

2910

1000

E27

Г 230-240-200-1

235

200

2910

1000

B22d*

Рис. 5, а

РН 230-240-100

235

100

1200

1000

B22d*

РН 230-240-100

235

100

1200

1000

E27

Примечание. * — исполнение по заказу.

2.2.2. Лампы общего назначения низковольтные

Лампы предназначаются для освещения в шахтах, электростанциях, трамваях, судах и т.д.

Рисунок

Тип лампы

Напряжение, В

Мощность, Вт

Световой поток, лм

Срок службы, ч

Тип цоколя

Рис. 5, г

Б 125-135-100

130

100

1540

1000

E27

Рис. 5, д

Г 125-135-200

130

200

3350

1000

E27

Рис. 5, г

РН 125-135-60*

130

60

E27

Примечание. * — исполнение по заказу.

2.2.3. Лампы общего назначения в декоративной колбе

Лампы предназначаются для освещения и декоративной подсветки помещений. Д — декоративная колба. С — свечеобразная. МТ — матированная. В — витая. З — зеркальная.

Рисунок

Тип лампы

Напряжение, В

Мощность, Вт

Световой поток, лм

Срок службы, ч

Тип цоколя

Рис. 5, е

ДВ 235-245-40

240

40

395

1000

E14

ДВ 235-245-60

240

60

670

1000

E14

Рис. 5, ж

ДС 215-225-15-1

220

15

90

1000

E14

Рис. 5, р

ДС 235-245-40-1*

240

40

395

1000

E14

ДС 235-245-60-1

240

60

670

1000

E14

Рис. 5, ж

ДСМТ 215-225-15-1

220

15

80

1000

E14

ДСМТ 220-230-15-1

225

15

80

1000

E14

Рис. 5, з

РН 220-230-30*

225

30

240

1000

E14

РНЗ 220-230-30

225

30

180

1000

E14

Примечание. * — исполнение по заказу.

Популярные статьи  Как проверить работу УЗО

2.2.4. Лампы для светильников местного освещения

Лампы предназначены для освещения рабочих мест в производственных помещениях, помещений с повышенной влажностью (погребов, гаражей, строительных площадок и т.д.) МО — местного освещения.

Возможна замена цоколя на B22d/25.

Рисунок

Тип лампы

Напряжение, В

Мощность, Вт

Световой поток, лм

Срок службы, час

Тип цоколя

Рис. 5, и

МО 12-25

12

25

380

1000

E27

МО 12-25-1

12

25

380

1000

E27

МО 12-40

12

40

620

1000

E27

МО 12-40-1

12

40

620

1000

E27

МО 24-40

24

40

580

1000

E27

Рис. 5, к

МО 24-40-1

24

40

580

1000

E27

Рис. 5, и

МО 24-60

24

60

980

1000

E27

Рис. 5, к

МО 24-60-1

24

60

980

1000

E27

Рис. 5, и

МО 36-25

36

25

300

1000

E27

МО 36-25-1

36

25

300

1000

E27

МО 36-40

36

40

580

1000

E27

МО 36-40-2

36

40

580

1000

E27

МО 36-60

36

60

950

1000

E27

МО 36-60-1

36

60

950

1000

E27

2.2.5. Лампы для швейных машин и холодильников

Лампы предназначены для освещения швейных машин, холодильников и других приборов на напряжение 220 В.

РН — различного назначения. Лампы модификации -2, -3 обладают повышенной стойкостью к воздействию вибраций и ударов.

Рисунок

Тип лампы

Напряжение, В

Мощность, Вт

Световой поток, лм

Срок службы, ч

Тип цоколя

Рис. 5, л

РН 215-225-15-1

220

15

90

1000

B15d

РН 215-225-15-1

220

15

90

1000

E14

РН 215-225-15-2

220

15

90

1000

B15d

РН 215-225-15-2

220

15

90

1000

E14

РН 215-225-15-3

220

15

90

1000

B15d

РН 215-225-15-3

220

15

90

1000

E14

РН 235-245-15-2

240

15

90

1000

B15d

РН 235-245-15-2

240

15

90

1000

E14

2.2.6. Лампы в цилиндрических колбах

Лампы предназначены для освещения в пультах управления и сигнализации, различных устройствах и приборах, а также для освещения жилых помещений.

Ц — цилиндрические колбы.

Рисунок

Тип лампы

Напряжение, В

Мощность, Вт

Световой поток, лм

Срок службы, ч

Тип цоколя

Рис. 5, м

Ц 110-4

110

4

10

1000

E14

Ц 110-4

110

4

10

1000

B15s

Ц 110-4

110

4

10

1000

B15d

Ц 125-135-15

130

15

105

1000

B15d

Ц 125-135-15

130

15

105

1000

B15s

Ц 125-135-15

130

15

105

1000

E14

Рис. 5, н

Ц 125-135-15-1

130

15

105

1000

B22d

Ц 125-135-15-1

130

15

105

1000

E 27

Рис. 5, о

Ц 220-230-15

225

15

90

1000

B15d

Ц 220-230-15

225

15

90

1000

E14

Рис. 5, н

Ц 220-230-15-1

225

15

90

1000

E27

Ц 220-230-15-1

225

15

90

1000

B22d

Рис. 5, о

Ц 220-230-25

225

25

190

1000

E14

Ц 220-230-25

225

25

190

1000

B15d

Рис. 5, н

Ц 220-230-25-1

225

25

190

1000

B22d

Ц 220-230-25-1

225

25

190

1000

E27

Рис. 5, о

Ц 235-245-10

240

10

52

1000

B15d

Ц 235-245-10

240

10

52

1000

E14

Ц 235-245-10-1

240

10

52

1000

B22d

Ц 235-245-10-1

240

10

52

1000

E27

Рис. 5, п

Ц 60-10

60

10

65

1100

B15d

Ц 60-10

60

10

65

1100

E14

Виды ламп накаливания

Виды ламп накаливания

Виды ламп накаливания

Виды ламп накаливания

Рис. 5. Форма и размер ламп накаливания Томского электролампового завода

Виды и классификации источников света

По природе излучения

Естественные Искусственные
Самопроизвольно излучают свет Созданы руками человека
Солнце, огонь, полярные сияния, некоторые животные и растения, фосфор Зажигалки, спички, лампы, монитор телевизора и т. д

 Таблица 1. 

По виду излучения 

Тепловые Люминесцентные
Излучение получается в результате нагрева источника. Источник света остается холодным.
Огонь, Солнце, лампы накаливания. Лампы дневного света; рекламные трубки с инертными газами; светлячки, некоторые виды грибов, планктона и рыб.

 Таблица 2. 

Также источники света могут быть:

Точечные Протяженные
Источники света, размеры которых малы по сравнению с расстоянием до наблюдателя и ими в данных условиях можно пренебречь. Источник света, который нельзя назвать точечным, каждая его точка излучает свет во всех направлениях.
Для наблюдателя с Земли — звезды. Солнце, лампы дневного света, рекламные вывески.

 Таблица 3. 

Один и тот же источник света в разных условиях можно назвать точечным или протяженным. 

Пример: если лампа находится достаточно близко к объекту, то она будет протяженным источником света. Если же она находится далеко, то точечным.

Также можно сказать, что от протяженного источника видимое излучение попадает не в одну точку объекта, а на относительно большую его поверхность.

Виды искусственных электрических световых излучателей, исходя из классификации по принципам работы:

1. Тепловые источники света. 

Классические лампы накаливания, а также галогенные лампы, угольные дуги, инфракрасные излучатели.

Принцип действия основан на нагревании рабочего элемента (чаще всего — проволоки из вольфрама) до температуры, при которой он начинает испускать инфракрасное излучение и видимый свет.

Плюсы:

  • обладают хорошей цветопередачей;
  • на работу не оказывает влияния внешняя среда;
  • не требуют дополнительных устройств для запуска;
  • экологичные.

Минусы:

  • КПД менее 3 %. Энергия расходуется на разогрев и поддержание нужной температуры вольфрамовой проволоки;
  • срок службы не превышает 2000 часов.

Особенность галогенных ламп — более длительный ресурс эксплуатации, около 5000 часов. В колбу устройства вводят специальные галогеновые газы, замедляющие разрушение вольфрамовой нити. Среди плюсов таких ламп — яркий свет, высокое качество цветопередачи.

2. Люминесцентные.

Газоразрядные лампы, лампы с тлеющим разрядом, ртутные лампы с дуговым разрядом низкого и высокого давления. 

Электрический импульс создает ультрафиолетовое излучение, при котором наблюдается свечение люминофора в парах ртути. 

Плюсы:

  • энергопотребление ниже и срок службы дольше, чем у ламп накаливания;
  • колбе можно придать любую форму: есть трубчатые, кольцевые и компактные спиралевидные модели;
  • хороший уровень световой отдачи.

Минусы:

  • требуется дополнительный пускорегулирующий аппарат;
  • из-за содержания ртути требуют специальных условий утилизации;
  • плохой уровень цветопередачи и мерцание.

3. Смешанного типа.

Специализированные излучатели для прожекторных установок (например, авиационных и корабельных), которые способны функционировать в особых условиях.

В основу работы положен нагрев электрической дуги высокой интенсивности. Не встречаются в свободной продаже. Для запуска требуется сложная схема, обеспечивающая нагрев и поддержание разряда, поэтому энергопотребление высокое. 

4. Светодиодные или LED (англ. light-emitting diode, LED) 

Источники света на основе свето- или фотодиодов. 

Светодиоды — полупроводниковые приборы, излучающие свет при пропускании электрического тока постоянной частоты. 

Фотодиоды — под действием лучей света накапливают электроны, создавая электрический потенциал. При пропускании электрического тока в прямом направлении электроны перемещаются с одного энергетического уровня на другой и излучают фотоны. 

Современные материалы позволяют дать хорошую яркость и охватить почти весь цветовой спектр, поэтому светодиоды широко применяются в качестве осветительных приборов. Бывают в виде сменных ламп или отдельно выполненных светильников — самостоятельных устройств, состоящих из корпуса, светодиода и электрического драйвера (преобразователя питания). 

Плюсы:

  • низкая потребляемая мощность,
  • длительный срок службы;
  • надежны в использовании;
  • не требуют специальных условий утилизации.

Минусы:

  • высокая цена;
  • при выходе из строя одного из элементов, светильник, сделанный в виде самостоятельного устройства, подлежит замене на аналогичный.

Эти недостатки чаще всего компенсируются экономией на электроэнергии и обслуживании (редкая замена ламп), что особенно актуально для уличного освещения.

Сравнительная таблица источников света приведена на рисунке 1. 

Рисунок 1. 

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Источник энергии солнца
Виды ламп накаливания