Для чего нужно заземление

Какие системы существуют

В многоквартирных домах с напряжением 220W возможны несколько систем заземления, основные нормы и требования к которым перечислены в пункте 1.7 ПУЭ. Системы имеют маркировку. Первая буква означает состояние нейтрали источника питания относительно земли:

  • I – изолированная;
  • T – заземленная.

Вторая – это состояние открытых проводящих частей относительно земли:

  • T – проводящие части заземлены;
  • N – подключены к заземленной нейтрали.

Последняя обозначает принцип совмещения нулевого защитного и рабочего проводника:

  • S – проводники разделены;
  • C – функции совмещены в одном проводнике.

Согласно ГОСТ Р 50571.2-94 нулевые проводники обозначаются:

  • N – рабочий;
  • PE – защитный;
  • PEN – совмещение защитного и рабочего.
  1. TN-C. Система распространена в старых многоквартирных домах и характеризируется отсутствием отдельного заземляющего проводника. На всем протяжении сети нулевой защитный проводник совмещен с рабочим (PEN). Такая защита применялась в хрущевках и брежневках. С точки зрения электробезопасности она одна из самых ненадежных. Определить, что в квартире именно эта система подключения, можно, заглянув в подъездный щиток. Внутри будет четыре входящих кабеля (PEN и три фазы) и два уходящих в квартиру (PEN и фаза). Защитные контакты в розетках будут отсутствовать.
  2. TN-S. Система пришла на смену устаревшей и заведомо опасной TN-C. Рабочий и защитный проводник разделяются еще на подстанции и не пересекаются на всем своем протяжении. Определить такое подключение можно только в вводно-распределительном устройстве, доступ к которому в многоквартирных домах ограничен. На входе в него пять кабелей (3 фазы, PE и ноль), три уходят в квартиру (PE, фаза, ноль).
  3. TN-C-S. Эта система – промежуточный вариант между двумя предыдущими, модернизация устаревшей системы TN-C в жилых помещениях. На всем протяжении нулевой защитный проводник и рабочий совмещены, а на входе в здание начинается их разделение.
  4. TT. Такая система оптимальна там, где все остальные не будут обеспечивать достаточную электробезопасность, например, в отдельно стоящих частных домах, металлических контейнерах или торговых павильонах. Напряжение подается по четырем проводам (три фазы и ноль). Принцип работы основан на том, что защитный нулевой проводник заземлен независимо от рабочего проводника. Связь между ними отсутствует, а контуры заземления не сообщаются.
  5. IT. Напряжение передается по трем фазам проводов. На стороне конечного потребителя присутствует защитный контур, нейтраль источника изолирована. Система применяется на установках, которые требуют бесперебойного снабжения током и нуждаются в постоянном контроле.

Классификация заземляющих систем (естественные и искусственные конструкции)

В качестве заземляющих устройств с характеристиками, соответствующими требованиям ПУЭ, широко применяются как естественные, так и искусственные системы и приспособления. Естественными ЗУ называются уже заглубленные в землю металлические конструкции и трубопроводы или их части, находящиеся в непосредственном соприкосновении с грунтом.

Естественные заземлители зданий и сооружений

Поскольку на обустройство таких ЗУ специальных затрат совершенно не требуется – действующими нормативами они рекомендуются к применению в первую очередь. И только в случае, если естественные заземляющие конструкции отыскать не удается – приходится устраивать их искусственный аналог. Для выяснения того, что является определением понятия искусственного заземления, потребуется разобраться с ним более подробно.

Под такой системой понимается устройство, изготавливаемое специально в целях организации местного заземления на трансформаторной подстанции или на стороне потребителя. В качестве элементов конструкции традиционно применяются вбиваемые вертикальные или укладываемые горизонтальные стальные заготовки. В первом случае используются стальные прутки диаметром не менее 12 мм и длиной 3-5 метра, а во втором – уголки с типоразмером 50x50x6 мм. Для этой же цели могут выбираться металлические трубы диаметром не менее 6 мм.

Установка заземлителя в грунт

Вертикальные электроды (смотрите фото слева) забиваются в грунт на глубину 2,5 метра, для чего в нем предварительно подготавливается траншея глубиной около 0,5-0,6 метра. Оголовок вбитого электрода должен выступать над поверхностью земли выкопанной траншеи на высоту порядка 0,1-0,2 метра. Вертикальные элементы конструкции соединяются с горизонтальными перемычками на сварку.

Выбор параметров электродных прутьев и глубина их погружения зависят от характера грунта в данной местности и особенностей ее климатических условий.

Согласно ГОСТ и действующим положениям ПУЭ сопротивление Rз контура заземления на протяжении периода эксплуатации должно составлять:

  1. не более 8 Ом при питающем фазном напряжении подстанции 220/127 Вольт,
  2. порядка 4 Ома при линейном питающем напряжении 380 Вольт;
  3. не более 2-х Ом при электропитании 660/380 Вольт.

Эти параметры действительны для случая, когда ЗУ применяются в сетях напряжением до 1000 Вольт. Если они обустраивается для действующих электроустановок с рабочими напряжениями выше 1000 Вольт и с малыми токами замыкания на землю – сопротивление высчитывается по специальным формулам (смотрите ПУЭ).

Схемы заземления

Бытовые потребители получают электричество от трехфазного понижающего трансформатора с напряжением на выводах обмотки вторичного типа 380 В. Катушки соединены по схеме звезды, средний контакт которой подключен к заземляющему контуру, расположенному неподалеку в земле. Такую схему именуют глухозаземленной нейтралью.

Различают виды защиты:

  • Естественная. К этой группе относят установки с постоянным расположением в грунте, например, железобетонный фундамент, трубы теплотрассы и другие. К таким конструкциям нет требований по величине сопротивления, при этом показатель ничем не координируется. Метод не используют для заземления электроустановок.
  • Искусственная. Преднамеренное соединение электросети, установки, агрегата с заземляющим контуром. В составе установки есть проводящая часть, контактирующая непосредственно с грунтом или через промежуточную среду. Также присутствует заземляющий провод между точкой оборудования и заземлителем. Последний представлен стальным стержнем или сложной системой соединенных металлических элементов.

Разновидности искусственных схем:

С глухозаземленной нейтралью. Относят к распространенному виду, чаще всего применяют при электропитании жилых кварталов и зданий.

С изолированной нейтралью. В этом случае не заземляют вторичные обмотки преобразователя мощности

Их чаще применяют для промышленных установок, нагревательных печей, где важно не стыковать токоведущие элементы и контур заземления.

Как выбрать схему

Играет роль разновидность грунта, каждый тип отличается показателем удельного сопротивления

Это ключевые характеристики, на которые обязательно обращают внимание

Показатели для некоторых видов земли:

  • садовый чернозем — 40 Ом·м;
  • глина средней твердости, влажные суглинки — 60 Ом·м;
  • сухой суглинок, супесь — 100 – 145 Ом·м.

Зимний промерзший грунт показывает более высокое сопротивление, поэтому учитывают климат, район.

Популярные статьи  заземление в частном доме

Принимают во внимание факторы:

  • Величину сопротивления растеканию тока, нужную по условиям работы электрических приборов. Для домашних приборов достаточно 30 Ом·м.
  • Глубину подъема подземных вод в период паводков и наводнений. От значения зависит глубина забивки вертикальных металлических уголков. Увлажненные почвы показывают наивысшие результаты.
  • Количество заземляющих установок. Число зависит от максимально доступной глубины погружения. Если есть возможность мелкого заглубления, увеличивают количество заземляющих устройств.
  • Длину плоского горизонтального проводника. Элемент соединяет вертикальные электроды между собой, также — с основной заземляющей шиной. Если высота заземлителей до 10 м, протяженность проводника делают не меньше их длины, больше 10 м — не меньше половины их протяженности.
  • TN — с глухозаземленной нейтралью;
  • TN-C — с совмещенными нулевыми рабочими и защитными жилами;
  • TN-S — с разделенными рабочими и защитными проводниками;
  • TN-C-S — функции рабочего и нулевого провода совмещены не на всей протяженности, а только в одной части;
  • IT — нейтраль изолирована от заземлителя или заземлена посредством приборов, а заземлены только открытые токопроводящие детали;
  • TT — нейтраль от источника электричества глухо заземлена, а токопроводящие детали защищены заземляющей зависимой установкой от глухо заземленной нейтрали.

Что даст заземление прибора

Теперь, когда корпус прибора соединен с заземлителем как и нейтраль, если напряжение фазы попадет на корпус, то сразу наступит короткое замыкание в цепи фаза-ноль. Это приведет к срабатыванию автоматического выключателя прежде, чем кто-либо из людей успеет соприкоснуться с оказавшимся под опасным напряжением корпусом прибора. Такова защитная функция заземления.

Заземление в целях молниезащиты

Для отведения в землю тока молнии, ударившей в здание, тоже применяют заземление. Но поскольку ток молнии ищет путь от молниеприемника к земле по элементам здания наименьшего сопротивления, этим путем могут оказаться и водопроводные трубы, и влажные стены, и другие проводящие части здания, что весьма опасно. Поэтому молниеотвод прокладывается отдельным проводом по наружной части здания, так он напрямую соединяет молниеприемник с заземлителем, обеспечивая для разряда молнии путь в землю минимального сопротивления. При этом люди и чувствительные электроприборы внутри здания остаются в безопасности.

Для чего нужно заземление Заземление в целях молниезащиты.

Часто задаваемые вопросы

В какой цвет окрашивают провода заземления?
Согласно правилам, в бытовой электропроводке: — фазный провод L — имеет коричневый или красный цвет; — нулевой рабочий N — (или как его называют «нейтральный» или «ноль») окрашивается в синий цвет; — нулевой защитный PE — (заземляющий проводник) окрашивается в желто-зеленый цвет.

Какая разница между заземлением и занулением?
Разница лишь в том, что защитное зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода, а заземление мгновенно отводит опасное напряжение на землю.

Где заземление подключается в розетке?
При установке розетки рекомендуется подключение фазного провода к правой клемме, нулевого — к левой клемме, а заземляющего — к нижней или центральной клемме.

Зачем нужно заземление в частном доме

Начнём с того что согласно правилам устройства электроустановок (ПУЭ) корпуса электрооборудования, которые выполнены из токопроводящего материала и вследствие пробоя изоляции могут оказаться под напряжением должны быть заземлены, а частный дом — это рассадник электроустановок. Электрический ток является очень опасным видом энергии, который невозможно услышать или увидеть, а также понюхать. Его только можно измерять с помощью специальных приборов прошедших поверку и рассчитанных на определенную величину напряжения. Во время аварийной ситуации, а именно пробоя изоляции электрического устройства, например, бойлера (водонагревателя), опасное напряжение окажется и на корпусе, и в воде, что может не только навредить здоровью человека, но и лишить его жизни. Вообще, заземление бойлера очень актуально, так как в нём соединены все особо опасные факторы электрической опасности.

Для чего нужно заземление
Ток, как и вода, всегда будет течь по меньшему сопротивлению, поэтому если сопротивление человека колеблется от 2000 до 5000 Ом, то заземляющий провод и сама система заземления в частном доме должна быть не выше 4 Ом. Сила тока на участке человеческого прикосновения значительно ниже чем между точкой пробоя изоляции и заземлением. При переменном напряжении с частотой 50 Гц смертельная величина тока для человеческого организма составляет всего 0,1 А, потеря сосания или обморок может случиться уже при 0, 03 А.

Для того чтобы человек почувствовал ток он должен пройти по нему, а так как пол в многоэтажном или же частном доме, чаще всего, сделан из токопроводящего материала, то для этого необязательно даже прикасаться к какому-то металлическому предмету, который станет замыкающим элементом цепи. Напряжение обязательно поразит человека, а так как его величина 220 или же 380 Вольт (в зависимости от электроснабжения) то легко можно посчитать ток, который пройдёт через тело человека. Для этого нужно величину напряжения разделить на сопротивление тела. Во влажных помещениях, например, в подвальном помещении, а также в ванных, душевых комнатах оно будет ниже.

Из чего состоит заземление

В состав заземляющей системы согласно ее определению (смотрите ПУЭ) входят такие обязательные элементы, как:

  1. Сам ЗК, обустраиваемый на основе металлических уголков площадью поперечного сечения не менее 100 мм квадратных или отдельных штырей диаметром порядка 20 мм.
  2. Комплект специальных проводников (медных шин), позволяющих в жилых домах заземлять электрические приборы.

В зависимости от своего расположения относительно здания защитные конструкции могут быть внешними и внутренними. Рассмотрим как нужно обустраивать каждый из представленных видов контуров, чтобы добиться наилучших результатов.

Внешний контур

При обустройстве наружного контура заземления необходимо учитывать качество и состав грунта в месте расположения его элементов. Хозяева самостоятельно отстроенного дома обычно знают, на какой почве он стоит, и сразу могут определить, как она влияет на проводимость. В противном случае потребуется помощь специалистов по геодезии.

При самостоятельном проведении работ важно знать, что грунты бывают:

  • чисто глинистыми;
  • суглинистыми;
  • торфяными;
  • черноземными;
  • гравийными и скалистыми.

В реальных условиях в пределах домашнего участка чаще всего встречаются первые два класса почв или их разновидности (суглинок пластичный, глинистые сланцы и подобные им). Для различных типов грунтов их удельные сопротивления имеют следующие значения:

  • Глина пластичная и мягкий торф – 20-30 Ом·/метр.
  • Для суглинка с содержанием золы и пепла, а также простой садовой земли этот показатель составляет 30-40 Ом/метр.
  • Черноземные земли и глинистые сланцы, а также глина полутвердая имеют сопротивление, близкое к значениям 50-60 Ом/метр.

С точки зрения организации внешнего контура заземления эти почвы – самые подходящие, поскольку в них сопротивление растеканию имеет небольшую величину.

Грунты с большими значениями сопротивлений представлены такими видами, как:

  1. Полутвердый суглинок, иногда определяемый как смесь глины и песка, а также так называемая «влажная супесь», имеющая средний показатель 100-150 Ом/·метр.
  2. Содержащий глину гравий и влажный песок – 300-500 Ом/·метр.
Популярные статьи  Как работает система относительных единиц и что это такое

А такие «жесткие» грунты, как скала, гравий и сухой песок совершенно неспособны обеспечить надежное заземление. В этих условиях принимаются специальные меры, позволяющие понизить сопротивление заземляющих контуров в месте расположения штырей.

Дополнительная информация: Они чаще всего сводятся к искусственному изменению состава почвы. Как пример – добавление в нее раствора поваренной соли.

Еще один вариант, позволяющий найти выход из сложившейся ситуации – обустройство глубинных заземлителей, достающих до слоев более «легкого» состава. Но этот подход к тому, как обустроить наружное заземление, достаточно трудоемок и обойдется недешево.

Контур заземления внутри объекта

При расчете элементов внутреннего контура заземления необходимо учитывать, что смонтированная внутри здания токопроводящая полоса должна охватывать периметр каждого из имеющихся в нем помещений. К открыто проложенной вдоль стен и вблизи от пола заземляющей шине подсоединяются все установленные в них электроустановки и приборы.

Заземляющая шина в распределительном шите

В этих условиях особое внимание уделяется таким составляющим, как заземляющие проводники (соединители, предназначенные для подключения бытовых приборов и ванны непосредственно к заземлению). Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи)

Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже)

Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи). Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже).

Главная заземляющая шина

Применение повторного заземления в классической системе TN

Повторное заземление является важнейшим элементом комплексной системы защиты от поражения электрическим током. Его используют для заземления нулевого защитного провода РЕ и РЕN электрических сетей до 1000 Вольт в системе ТN с глухозаземленной нейтралью трансформатора.

Классические системы заземления принято различать по состоянию их нейтрали, которая может быть глухо заземленной или изолированной. В соответствие с этим признаком они делятся на две большие группы и обозначаются соответствующим сочетанием английских букв. «Т» означает земля, а «N» – нейтраль, что при их совместном написании символизирует заземленный «нуль». Помимо этого в данных системах предусмотрены проводники и шины, обозначаемые как PE (отдельный заземляемый повод) или же PEN –совмещенная рабочая и защитная шина.

В зависимости от выбранной схемы постоянно заземленный нейтральный провод N может быть как независимым от защитного PE-проводника, а может соединяться с ним, образуя шину PEN. В первом случае получаем систему TN-S («Separate» или раздельная прокладка), а во втором – TN-C.

Существует еще один вариант, когда два провода (защитный и нулевой) на стороне подстанции объединены, а при вводе на объект разделяются на защитный проводник PE и функциональную шину N. Подобная организация системы защиты потребителя носит название TN-C-S и также предполагает обязательность заземления нулевого провода.

Какой инструмент пригодится

Для искусственных заземлителей берут стальные пруты, уголки и трубы. Последние могут быть как круглого, так и прямоугольного сечения. Подойдет и бетон. У него есть электропроводный тип. Использование бетона выгодно с точки зрения устойчивости материала к коррозии.

В землю электроды загоняются кувалдой. С заводскими наборами работают отбойниками. Для соединения штырей берут латунные резьбовые муфты. Соединение проводящего провода с электродом идет через зажим. Берут стальной.

Снизить сопротивление на стыках помогает специальная паста. Она есть в электротехнических магазинах. Сваривают конструкцию, естественно, сварочным аппаратом или по старинке паяльником. Стремянка во время монтажа тоже пригождается.

Не забываем и про стальную, медную муфту, если делаем заземление в многоквартирном доме. В общем, точный набор инвентаря зависит от типа строения, его этажности, мощности сети.

Если прибор не заземлить

О каких возможных авариях идет речь и что необходимо заземлять? Опасное напряжение в случае поломки прибора может попасть на его корпус. Что опасного может произойти, если корпус не заземлен? Если в этих условиях человек соприкоснется с корпусом прибора (к примеру речь может идти о стиральной машине), то его ударит током, потому что тело человека имеет конечное электрическое сопротивление, а через пол и через окружающие предметы он так или иначе соединен с нулевым проводом сети (который как правило заземлен — глухозаземленная нейтраль).

А поскольку ток стремится замкнуть цепь, то он (ток), стремясь к нулевому проводу (и к земле) потечет через человека — это и есть поражение электрическим током, которое может оказаться смертельно опасным. Поэтому для защиты от подобных неприятностей корпуса электрических приборов заземляют — соединяют с землей через заземлитель.

Популярные системы заземления

Существует несколько вариантов обустройства системы заземления. Нормы и требования, предъявляемые к ним перечислены в ПУЭ — правила устройства электроустановок. Все существующие системы определенным образом маркируют. Например, TN-C – система заземления, распространенная в домах старого жилого фонда.

Она характеризуется низким уровнем безопасности. При организации этого варианта защитный провод соединяют с рабочим. Отдельно заземляющий проводник в схеме отсутствует. Также существуют системы TN-S, TN-C-S, TT, IT. В новостройках используют варианты: ТN-S и ТN-С-S. В этом случае проводку прокладывают трехжильным кабелем, обеспечивая выделенное заземление. Подробнее о системах заземления.

Зачем нужно заземление – ликбез по электробезопасности

Для чего нужно заземлениеНаличие заземляющего контакта в современных электророзетках стало привычным делом. Ему соответствует контакт на вилке любого электроприбора. Попробуем разобраться, зачем нужно заземление.

Что такое заземление

Заземлением называют подключение токопроводящих элементов, в норме не пребывающих под напряжением, к заземлителю — заглубленной в грунт металлической конструкции с низким электрическим сопротивлением. В качестве упомянутых токопроводящих элементов могут выступать металлический корпус электроустановки, рабочие органы машин или бытовых приборов и т.д.

Также заземляют экранирующие оплетки электрических кабелей.

Работа заземления совместно с УЗО

Защитное заземление является основной защитой от поражения электрическим током

Но одной меры предосторожности не всегда может быть достаточно. Для дополнительной защиты в цепь устанавливается устройство защитного отключения (УЗО)

Если объяснять техническим языком, то УЗО – это коммутационный аппарат, предназначенный для автоматического отключения от сети поврежденного прибора при появлении тока утечки.

Когда внутри электроприбора (будь до стиральная машина, бойлер, компьютер и т.п) происходит повреждение изоляция и фаза попадает на заземленный корпус, ток начинает стекать в землю. На протекание этого тока реагирует УЗО, которое мгновенно срабатывает и отключает поврежденный прибор, тем самым оставляя цепь без напряжения. По внешнему виду и принципу работы УЗО похоже на обычный автомат. Только автомат защищает саму электрическую цепь от больших токов, а УЗО человека от попадания под напряжение.

Популярные статьи  Возможно ли заменить драйвер в светодиодной лампе?

Работа заземления совместно с УЗО.

Для чего нужно заземление

Бывало ли у вас такое, что дотронувшись до микроволновки или стиральной машинки, особенно влажными руками, тут же получаешь неприятный разряд? Нет? Отлично! Значит, в вашем доме все в порядке с электропроводкой и электроприборами. При повреждении электроприборов такое бывает и, дотрагиваясь до корпуса человек получает неприятный разряд электрического тока. Все происходит потому, что тело становится проводником между электроприбором и землёй. Так как ток у нас идёт по пути наименьшего сопротивления, то и надо это наименьшее сопротивление обеспечить, а именно связать корпус электроприбора и землю. Медный кабель проводит ток гораздо лучше человеческого тела, поэтому при правильном заземлении человек не страдает, и ток спокойно уходит в землю.

Подводя итог, стоит сказать, что заземление частного дома нужно для того, чтобы человека не било током от корпуса электрических приборов.

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

  • TN-S;
  • TN-C;
  • TNC-S;
  • TT;
  • IT.

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Watch this video on YouTube

Ещё один способ заземления

Примите удобное сидячее положение и прикройте глаза. Ноги упираются в пол, руки лежат на бёдрах. Не скрещивайте их. Сделайте медленный и глубокий вдох, ненадолго задержите дыхание, затем выдох. Повторите несколько раз, концентрируясь при этом в центре головы. Очистите ум от мыслей, создайте сильное чувство сознательного присутствия. Сделайте ещё пару таких вдохов-выдохов, отслеживая, какие части тела увеличиваются на вдохе, а какие нет. Теперь попробуйте во время вдохов прилагать дополнительные усилия для расширения тела, чтобы острее прочувствовать своё присутствие в нём. Повторите от 2 до 4 раз

Важно! Делайте это без напряжения, избегайте возникновения дискомфорта. Сконцентрируйтесь на своих ступнях

Постарайтесь сделать их чувствительнее и восприимчивее. Продолжайте медленно дышать. Перенесите своё сознание: мужчины – в муладхара чакру, которая расположена на копчике, женщины – в свадхистана чакру, расположенную между основанием позвоночника и пупком. Визуализируйте, что туда прикреплён световой шнур диаметром около 15 см. Мысленно протяните этот шнур сквозь всю Землю прямо к магнитному ядру. Концентрация внимания – в районе головы. Вы можете почувствовать, что когда шнур достигнет ядра, он там закрепится, и его не удастся продолжить дальше. Хорошо привыкнув к световому шнуру, начните представлять, как у него меняется цвет. Вы можете использовать разные оттенки и текстуры в любых сочетаниях, позвольте себе развлечься. Прочувствуйте влияние на вас каждого цвета

Уделите выполнению этого этапа особое внимание и постарайтесь исследовать так максимальное количество оттенков. Теперь определите по внутренним ощущениям, какой цвет вам максимально подходит прямо сейчас

Выдерните созданный ранее шнур и опустите его в Землю, после чего создайте новый выбранного цвета и повторите шаги 6-7. Откройте глаза. Практика окончена.

Этот шнур будет полезен, если вы однажды проснётесь усталые и раздражённые. Просто воспользуйтесь им, и сразу почувствуете себя гораздо лучше. В случае же недостатка уверенности в себе подберите тот цвет, который поможет её обрести. Здесь вам помогут собственные ощущения и интуиция – смело доверьтесь им.

Практика заземления позволяет построить мост между космосом и Землёй, а затем чётко ощутить эту связь. Будучи заземлённым, вы заякорите свет своей души и сияние звёзд в материи, благодаря чему ваше тело станет более здоровым и выносливым, наполнится целительной и жизненной энергией. Заякоренная в теле Душа придаст вам дополнительные силы, помогающие осуществить самые сокровенные желания. Раскройте в себе творческие способности. Заземляйтесь, чтобы быстрее и эффективнее реализовывать в жизни желаемые изменения.

Десерт

https://youtube.com/watch?v=GeOxUe0bXVA

Принцип работы

Контур заземления функционирует за счет способности грунта поглощать электрический заряд. Если корпус оборудования в результате пробоя изоляции оказался под напряжением, то заряд будет стекать в землю. Когда пользователь коснется корпуса, ток все равно будет двигаться по пути наименьшего сопротивления, то есть через заземление, а не через тело человека. Не будь заземления, в подобной ситуации пользователь получил бы электротравму.

Условием нормального функционирования заземления является низкое сопротивление заземлителя. Эта величина зависит от параметров грунта:

  • плотность;
  • влажность;
  • соленость;
  • площадь контакта с заземлителем.

Способность грунта впитывать заряд сильно падает при замерзании. Поэтому штыри заземлителя вбивают на глубину ниже отметки промерзания, зависящей от широты местности. Данные о глубине промерзания грунта для разных регионов Российской Федерации приведены в СНиП «Строительная климатология».

Для чего нужно заземлениеНаглядная демонстрация заземления

На каменистых, песчаных и вечномерзлых грунтах, в которые сложно заглубиться, применяют электролитические заземлители из Г-образной перфорированной трубы. Внутри содержится реагент, формирующий соленую среду. Последняя характеризуется высокой проводимостью и низкой температурой замерзания. Длинную часть заземлителя закапывают в неглубокую траншею, короткую выводят на поверхность. Ее используют трояко:

  • для подключения шины заземления;
  • для засыпки нового реагента;
  • для заливки воды (провоцирует химическую реакцию в засушливый период).

Другой современный вариант заземлителя — модульный. Состоит из множества секций, соединяемых резьбовым или иным способом. По мере забивания в грунт навинчиваются все новые и новые секции. Так что такой заземлитель, в отличие от классического из нескольких штырей, можно установить на любую глубину. Соединяют секции по особым правилам и с применением токопроводящей пасты. При забивании используют особую насадку, защищающую резьбу от повреждений. Модули выполнены из стали и покрыты медью или цинком, отчего их сопротивление падает, а срок службы увеличивается.

Электролитический и модульный заземлители стоят дорого, потому их традиционные аналоги остаются востребованными. Штыри в такой конструкции располагают по-разному:

  • в вершинах равностороннего треугольника рядом с объектом;
  • по углам объекта;
  • по периметру объекта.

Число стержней и расстояние между ними определяются расчетом.

Сопротивление заземлителя периодически проверяют. Максимально допустимая величина — 30 Ом.

Оцените статью