Расчет емкостного тока сети

Как компенсировать емкостные токи замыкания на землю

Работа электрических сетей, напряжением от 6 до 10 киловольт, осуществляется с изолированной или заземленной нейтралью, в зависимости от силы тока замыкания на землю. Во всех случаях в схему включаются дугогасящие катушки. Нейтраль заземляется с помощью дугогасящих катушек, для того чтобы компенсировать токи замыкания на землю. Когда возникает однофазное замыкание на землю, работа всех электроприемников продолжается в нормальном режиме, а электроснабжение потребителей не прерывается.

Расчет емкостного тока сети

Значительная протяженность городских кабельных сетей приводит к образованию в них большой емкости, поскольку каждый кабель является своеобразным конденсатором. В результате, однофазное замыкание в подобных сетях, может привести к увеличению тока на месте повреждения до нескольких десятков, а в некоторых случаях – и сотен ампер. Воздействие этих токов приводит к быстрому разрушению изоляции кабеля. Из-за этого, в дальнейшем, однофазное замыкание становится двух- или трехфазным, вызывая отключение участка и прерывая электроснабжение потребителей. В самом начале возникает неустойчивая дуга, постепенно превращающаяся в постоянное замыкание на землю.

Когда ток переходит через нулевое значение, дуга сначала пропадает, а затем появляется вновь. Одновременно на неповрежденных фазах возникает повышение напряжения, которое может привести к нарушению изоляции на других участках. Для погашения дуги в поврежденном месте, необходимо выполнить специальные мероприятия по компенсации емкостного тока. С этой целью к нулевой точке сети подключается индуктивная заземляющая дугогасящая катушка.

Схема включения дугогасящей катушки, изображенная на рисунке, состоит из заземляющего трансформатора (1), выключателя (2), сигнальной обмотки напряжения с вольтметром (3), дугогасящей катушки (4), трансформатора тока (5), амперметра (6), токового реле (7), звуковой и световой сигнализации (8).

Конструкция катушки состоит из обмотки с железным сердечником, помещенной в кожух, наполненный маслом. На главной обмотке имеются ответвления, соответствующие пяти значениям тока для возможности регулировки индуктивного тока. Один из выводов включается в нулевую точку обмотки трансформатора, соединенной звездой. В некоторых случаях может использоваться специальный заземляющий трансформатор, а соединение вывода главной обмотки осуществляется с землей.

Таким образом, для обеспечения безопасности выполняется не только расчет емкостного тока, но и проводятся мероприятия по его компенсации с помощью специальных устройств. В целом это дает хорошие результаты и обеспечивает безопасную эксплуатацию электрических сетей.

Расчет емкостного тока сети

Формула емкостного сопротивления

Расчет емкостного тока сети

Заземление нейтрали трансформатора

Расчет емкостного тока сети

Расчет тока по мощности и напряжению

Расчет емкостного тока сети

Расчет реактивного сопротивления

Расчет тороидального трансформатора

Конструкция ДГР

Конструктивно ДГР близка к масляным трансформаторам: бак, заполненный трансформаторным маслом, в который помещена магнитная система с обмоткой. Сама магнитная система представляет собой регулируемую катушку индуктивности.

В настоящее время эксплуатируются различные виды ДГР, которые могут создаваться под индивидуальные условия эксплуатации, не требующие специальных настроек или изготавливаться с возможностью регулировки. В связи с этим различаются следующие конструкции магнитопровода:

  • с распределенным воздушным зазором;
  • плунжерного типа;
  • с подмагничиванием.

В ДГР имеющих магнитопровод с распределенным воздушным зазором, регулирование может отсутствовать вовсе или осуществляется за счет переключения ответвления для ступенчатого регулирования сопротивления.

В ДГР плунжерного типа имеет магнитную систему с перемещающимися стержнями, которые плавно регулируют воздушный зазор внутри обмотки. Стержни перемещаются с помощью электропривода, что обеспечивает плавное регулирование сопротивления реактора. ДГР с подмагничиванием магнитопровода постоянным током работает по принципу магнитного усилителя. При подмагничивании магнитопровода изменяются его магнитное сопротивление и, соответственно, индуктивное сопротивление реактора.

Для отстройки индуктивности ДГР оснащаются системами управления. По конструкции систем регулирования их можно разделить на:

  1. ДГР с ручным переключением числа работающих витков. Этот процесс не только трудоемкий, но и требует снятия напряжения с реактора;
  2. ДГР с приводом, работающим автоматически под нагрузкой сети;
  3. ДГР не имеющие возможности регулирования индуктивности системой управления не оснащаются.

Современные конструкции дугогасящих реакторов в управлении используют микропроцессорные технологии, облегчающие возможности эксплуатации предоставлением обслуживающему персоналу расширенной информации по статистике замыканий, поиску повреждений и другим полезным функциям.

Большая Энциклопедия Нефти и Газа

Емкостный ток — линия

Из графика видно, что при напряжениях, превышающих номинальное, намагничивающий ток становится соизмеримым с емкостным током линии , и ток через предвключенную индуктивность уменьшается.

Через место замыкания на землю проходят ток катушки и ток замыкания на землю, который складывается из емкостного тока линии и активной составляющей 3t / j g /, обусловленной утечками по изоляторам и потерями на корону в воздушных линиях, диэлектрическими потерями в кабельных линиях.

В ф-ле ( 22) обозначено: / 2 — ток конца линии в А, 1С — емкостный ток линии в А, который подсчитывается по номинальному напряжению линии, cos ( рг — коэфициент мощности нагрузки в конце линии.

В связи с созданием объединенных энергетических систем, увеличением мощностей, протяженностей и напряжений электропередачи стали существенны потери, вызванные протеканием емкостных токов линий . Так, для линии 500 кв длиной 800 км емкостная ( зарядная) мощность линии составляет около 800 Мв-а, для линии 750 / се той же длины-1800 Мв а, для линии 1150кв тойжедлины — 4600 Мв а. Величины эти соизмеримы с потоками активной мощности, протекающими по таким же линиям.

Приведенная векторная диаграмма линии передачи и формулы ( 10 — 10) и ( 10 — 10а) наглядно показывают влияние емкостного тока линии и зарядной мощности на изменение напряжения, тока и коэффициента мощности в начале линии в зависимости от изменения нагрузки, присоединенной к линии. Однако для практических расчетов линий графический способ не применяется, а пользуются аналитическими методами, рассмотрение которых дано ниже.

При определении экономических сечений проводов и потерь энергии обычно не учитываются так называемые потери холостого хода, вызванные коронированием проводов и емкостными токами линии , которые для электропередач напряжением выше 220 кв могут достигать значительных величин. Поэтому следует рассмотреть влияние этих потерь на экономическое сечение проводов линий электропередач.

Для того чтобы токовое реле надежно размыкало контакт при отключении линии с другого конца, уставка возврата реле должна быть больше величины емкостного тока линии .

Воздушные выключатели имеют следующие достоинства: взрыве — и пожаробезопасность, быстродействие и возможность осуществления быстродействующего АПВ, высокую отключающую способность, надежное отключение емкостных токов линий , малый износ дугогасительных контактов, легкий доступ к дугогасительным камерам, возможность создания серий из крупных узлов, пригодность для наружной и внутренней установки.

В отдельных случаях, оговоренных Правилами технической эксплуатации ( см. ПТЭ 1071 — 1072), разъединителями разрешается отключать небольшие токи холостого хода трансформаторов и емкостные токи линии .

В линиях электропередачи напряжением выше 110 — 220 кв, как уже отмечалось ранее, существенное значение имеют потери мощности и энергии, вызванные протеканием емкостных токов линии . Для линий напряжением 750 кв и длиной 400 км ошибка в определении потерь энергии из-за неучета емкостных токов составляет 20 — 40 % от суммарного значения потерь на нагревание проводов.

Популярные статьи  зануление и заземление в чем разница

Свойства отделителя определяют и область его применения: это выключатель высокого напряжения, очень небольшой мощности, служащий для оперативного отключения тока холостого хода трансформаторов и емкостного тока линии небольшой длины в нормальном режиме.

МТЗ линии 6-35 кВ

Я уже рассматривал МТЗ, но, повторение — мать ученья. Максимальная токовая защита с выдержкой времени выступает в качестве первой ступени трехступенчатой защиты линии. Для расчета необходимо рассчитать ток срабатывания защиты, ток уставки, выдержку времени и отстроиться от соседних защит.

1) На первом этапе определяем ток срабатывания защиты с учетом токов самозапуска и других сверхтоков, которые протекают при ликвидации КЗ на предыдущем элементе:

в данной формуле мы имеем следующие составляющие:

Iс.з.

— ток срабатывания защиты 2РЗ, величина, которую мы и определяем

— коэффициент надежности, который на самом деле можно считать скорее коэффициентом отстройки для увеличения значения уставки; для микропроцессорных равен 1,05-1,1, для электромеханических 1,1-1,4.

kсзп

— коэффициент самозапуска, его смысл в том, что при КЗ происходит просадка напряжения и двигатели самозапускаются. Если нет двигателей 6(10) кВ, то коэффициент принимается 1,1-1,3. Если нагрузка есть, то производится расчет при условии самозапуска ЭД из полностью заторможенного состояния. Коэффициент самозапуска определяется, как отношение расчетного тока самозапуска к максимальному рабочему току. То есть зная ток самозапуска, можно не узнавать максимальный рабочий ток, хотя без этого знания не получится рассчитать ток самозапуска — в общем, сократить формулу не удастся особо.

— коэффициент возврата максимальных реле тока; для цифровых — 0,96, для механики — 0,65-0,9 (зависит от типа реле)

Iраб.макс.

— максимальный рабочий ток с учетом возможных перегрузок, можно узнать у диспетчеров, если есть телефон и полномочия. Для трансформаторов до 630кВА = 1,6-1,8*Iном, для трансформаторов двухтрансформаторных подстанций 110кВ = 1,4-1,6*Iном.

2) На втором этапе определяем ток срабатывания защиты, согласуя защиты Л1 и Л2:

Iс.з.посл.

— ток срабатывания защиты 2РЗ

kн.с.

— коэффициент надежности согласования, величина данного коэффициента от 1,1 до 1,4. Для реле РТ-40 — 1,1, для РТВ — 1,3…1,4.

— коэффициент токораспределения, при одном источнике питания равен единице. Если источников несколько, то рассчитывается через схемы замещения и сопротивления элементов.

Первая сумма в скобках

— это наибольшая из геометрических сумм токов срабатывания МТЗ параллельно работающих предыдущих элементов.Вторая сумма — геометрическая сумма максимальных значений рабочих токов предыдущих элементов, кроме тех, с которыми происходит согласование.

3) На третьем этапе выбираем наибольший из токов, определенных по условиям 1) и 2) и рассчитываем токовую уставку:

kсх

— коэффициент схемы, данный коэффициент показывает во сколько раз ток в реле больше, чем ток I2 трансформатора тока при симметричном нормальном режиме работы; при включении на фазные токи (звезда или разомкнутая звезда) равен 1, при включении на разность фазных токов (треугольник) равен 1,73.

— коэффициент трансформации трансформатора тока.

4) Далее определяется коэффициент чувствительности, который должен быть больше или равен значения, прописанного в ПУЭ.

Отношение минимального тока, протекающего в реле, при наименее благоприятных условиях работы, к току срабатывания реле (уставке). Для МТЗ значение kч должно быть не менее 1,5 при кз в основной зоне защиты и не менее 1,2 при кз в зонах дальнего резервирования.

5) Определяемся с уставкой по времени

Смысл уставок по времени в следующем: если у нас КЗ как на рисунке выше, то сначала должен отключиться выключатель Л1 (находящийся ближе к КЗ), это необходимо, чтобы оставить в работе неповрежденные участки системы.

То есть tс.2рз=tс.1рз+dt

, где дельта t — ступень селективности. Эта величина зависит от быстродействия защит (в частности точности работы реле времени) и времени включения-отключения выключателей.

Если предыдущая РЗ является токовой отсечкой или же РЗ выполнена на электронных (полупроводниковых) реле — dt можно принять 0,3с. Если же в РЗ используются электромеханические реле, то dt может быть 0,5…1,0. Для различных реле эта величина может доходить до нескольких секунд.

Как было написано выше, особенностью МТЗ является накапливание выдержек времени от элемента к элементу. И чем больше величина dt, тем большей будет отдаленная уставка. Для решения этой проблемы следует устанавливать цифровые РЗ (dt=0,15…0,2с) и одинаковые выключатели. Ведь, если выключатели одного типа, то и время срабатывания у всех одинаковое. А если, оно невелико, то и суммарная величина будет мала.

В общем выбор мтз состоит из трех этапов:

  • несрабатывание 2РЗ при сверхтоках послеаварийных режимов
  • согласование 2РЗ с 1РЗ
  • обеспечение чувствительности при КЗ в конце Л1(рабочая зона) и в конце Л2 (зона дальнего резервирования)

Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Защиты на централизованном принципе лишены недостатков индивидуальных защит, таких как ложные срабатывания, связанные с переходными процессами на неповрежденных линиях. В централизованных защитах в основном применяют сравнение амплитудных или действующих значений токов нулевой последовательности. Поврежденный фидер определяется на основе сравнения токов нулевой последовательности по всем присоединениям и выборе присоединения с максимальным током нулевой последовательности. Расчет этих значений может проводиться как в начальный момент времени, то есть, основываясь на переходных величинах замыкания, так и в установившемся режиме. Кроме того, возможно применение высших гармонических составляющих токов нулевой последовательности либо наложенного тока с частотой, отличной от промышленной. Для расширения области применения на подстанциях с большим числом присоединений, возможно введение в такие защиты дополнительной информации, которая позволяет произвести отстройку от действия в некоторых сложных режимах, например, получение информации о напряжении нулевой последовательности с другой секции шин подстанции может повысить чувствительность.

Популярные статьи  Ремонт стиральных машин своими руками

Однофазные замыкания на землю в сетях с изолированной нейтралью

Распределительные сети 6-35 кВ работают в режиме с изолированной нейтралью. Электроснабжение потребителей осуществляется по трехпроводной системе, по средствам воздушных или кабельных линий. Такой режим работы нейтрали позволяет повысить надежность питания потребителей при некоторых видах повреждений в электрических сетях.

Так например, при однофазном замыкании на землю (такие повреждения занимают самый большой процент среди других), в сетях с изолированной нейтралью аварийного отключения поврежденного фидера не происходит. Линейные напряжения остаются такими же как и до замыкания одной фазы на землю.

Однако при однофазных замыканиях в сетях с изолированной нейтрали происходят процессы, влияющие на режим работы электрической сети в целом. Напряжение на поврежденной фазе, в зависимости от вида замыкания стремится к нулю. В случаях когда, измерительные приборы показывают, что напряжение на фазе равно нулю, говорят, что это «полная земля», а замыкание называется «металлическим».

Расчет емкостного тока сети

Симметрия линейных напряжений при этом не нарушается, а вот фазные напряжения, двух “здоровых” фаз поднимаются до уровня линейных. Наглядно такое перераспределение напряжений можно увидеть на векторной диаграмме треугольника напряжений. При уменьшении вектора напряжения, к примеру ф. А

, вектора напряжений ф.В и ф.С стремятся к векторам напряженийВА иСА .

Величина тока, протекающего в месте замыкания, находится в прямой пропорциональной зависимости от величины емкости линии и приложенного напряжения. Емкость линии зависит от ее протяженности и разветвленности. Этот ток имеет небольшие значения, однако опасность такого режима, заключается в периодическом зажигании перемежающейся дуги.

При горении дуги, во-первых, увеличивается фазное напряжение, во-вторых появляются апериодические составляющие токов, которые негативно сказываются на состоянии изоляции воздушных и кабельных линий. Кроме того, емкостный характер дуги сопровождается выделением теплоты, что порождает благоприятные условия для перехода однофазного замыкания в междуфазное.

Повышение фазных напряжений «здоровых» фаз до уровня линейных напряжений, грозит пробоем ослабленной фазной изоляции других линий, подключенных к этим шинам. Поэтому, согласно правилам техники эксплуатации электрических сетей, к отысканию и отключению поврежденного фидера необходимо приступать незамедлительно.

Для ограничения токов замыкания на землю в сетях с изолированной нейтралью применяют дугогасящие реакторы

(ДГР). Иначе их называют дугогасящая катушка или катушка Петерсена. Подключение катушки осуществляется к нейтрали трансформатора, подключенного к шинам компенсируемой сети. Принцип гашения дуги основан на взаимной компенсации токов емкостного и индуктивного характера.

С нарушением симметрии фазных напряжений, в нулевом выводе трансформатора катушки появляется потенциал, величина которого зависит от характера замыкания на землю: чем ниже напряжение на фазном проводе, тем выше напряжение в нейтрали, а соответственно и напряжение приложенное к катушке. Теоретически, самой идеальной компенсации емкостного тока замыкания на землю, можно достичь резонансной настройкой ДГР.

При такой настройке, ток катушки будет равен емкостному току замыкания на землю, и находится в противофазе, при этом достигается полная компенсация тока замыкания. На практике резонансной настройки ДГР достичь получается не всегда, однако и не всегда есть необходимость такой компенсации.

Дело в том, что емкости фаз воздушных линий различаются из-за расположения в пространстве, относительно друг друга. Линии, питающие потребителей с однофазными электроприемниками могут быть загружены неравномерно, это приводит к нарушению симметричности системы и появлению потенциала в нулевом проводнике трансформатора катушки.

Такие несимметричные режимы могут привести к излишней работе дугогасящих реакторов, и даже к возникновению резонансных контуров. Для исключения подобных ситуаций, допускается работа сети в недокомпенсированном режиме.

Компенсация токов замыкания на землю предусматривается при следующих уровнях токов: 6 кВ — 30 А, 10 кВ — 20 А, 35 кВ — 10 А. При более низких уровнях токов однофазного к.з. считается, что дуга не загорается, или гаснет самостоятельно, применение компенсации в этом случае не обязательно.

Расчет токовой отсечки линии

ТО может выполняться как с выдержкой времени (токовая отсечка с замедлением), так и без нее. При расчете ТО отстраивается от максимального тока короткого замыкания в конце защищаемой линии. ТО трансформатора также отсраивается от броска тока намагничивания. Формулы и более подробно про токовую отсечку написано здесь.

Для предотвращения воздействия сверхтоков и коротких замыканий, которые нельзя отключать с выдержкой времени, используется неселективная ТО без выдержки времени

. Это применимо для защиты синхронных машин от КЗ на шинах, которое может привести к нарушению устойчивости параллельной работы ТГ с энергосистемой и нарушению энергоснабжения. Формула для определения тока срабатывания неселективной ТО:

В вышеприведенной формуле:

Uс.мин

— междуфазное напряжение системы в минимальном режиме работы (0,9…0,95), В

— уже знакомый коэффициент надежности = 1,1…1,2

zс.мин

— сопротивление системы до места установки отсечки, Ом

ko

— коэффициент зависимости остаточного напряжения в месте установки отсечки от удаленности 3ф КЗ, определяется по зависимости графической

Остаточное напряжение — это напряжение, при котором обеспечивается динамическая стойкость работы синхронных генераторов (Uост>0,6) и электродвигателей (Uост>0,5).

Данная неселективная ТО применяется совместно с автоматикой (АВР, АПВ), что обеспечивает быстродействие при отключениях опасных кз. Однако, для совместной работы необходимо выполнить ряд мероприятий:

  • отстроить ТО от токов намагничивания трансформаторов,
  • отстроить ТО от кз на шинах НН трансформаторов, находящихся в её зоне действия
  • согласовать ТО с предохранителями, выключателями и другими устройствами, находящимися в её зоне действия

Последствия ОЗЗ

Несмотря на преимущества изолированной нейтрали, такой режим работы имеет ряд недостатоков:

  1. В зависимости от разветвленности сети емкостной ток может находиться в пределах от 0,1 до 500 ампер. Такая величина тока может представлять опасность для животных и людей, находящихся рядом с местом замыкания, по этой причине данные замыкания нужно выявлять и отключать, так же, как это делается и в сетях с глухозаземленной нейтралью.
  2. В большинстве случаев при ОЗЗ возникает дуговое замыкание на землю, которое может носить прерывистый характер. В таком случае, в процессе дугового замыкания возникают перенапряжения, превышающие в 2-4 раза номинальное фазное напряжение. Изоляция в процессе замыкания может не выдержать такие перенапряжения, вследствие чего возможны возникновения пробоя изоляции в любой другой точке сети и тогда замыкание развивается в двойное короткое замыкание на землю.
  3. В процессе развития и ликвидации ОЗЗ в трансформаторах напряжения возникает эффект феррорезонанса, что с высокой вероятностью приводит к их преждевременному выходу из строя.

Несмотря на перечисленные недостатки ОЗЗ не требует немедленного ликвидации повреждения. Согласно ПУЭ, при возникновении ОЗЗ возможно эксплуатация сети без отключения аварии в течении 4 часов, которые выделяются на поиск поврежденного участка.

Компенсационные меры защиты

В соответствии с положениями ПУЭ в нормальных условиях работы сети должны предприниматься специальные меры защиты от возможного пробоя на землю.

Популярные статьи  Осциллятор для инвертора

Для ограничения емкостных токов в нейтраль трансформатора вводится специальный дугогасящий реактор (смотрите рисунок 1, б). С его помощью удаётся снизить (компенсировать) ток однофазного замыкания на землю, возникающий сразу после аварии.

Практически установлено, что при наличии компенсатора воздушные и кабельные линии могут работать в критическом аварийном режиме довольно продолжительное время и вот почему.

Расчет емкостного тока сети

Как только протекающий в реакторе индуктивный ток Ip сравнивается по своей величине с противофазной емкостной составляющей Ic – наблюдается эффект компенсации, при котором Iр + Iс = 0 (явление резонанса токов).

Использование дугогасящего реактора оказывает определённое влияние на распределение потенциалов в линейных проводах и в нейтрали. В последней появляется напряжение смещения Ucм , вызванное асимметрией в цепи и приложенное к выводам реактора.

В резонансном режиме такое рассогласование приводит к искажению нормальной картины распределения потенциалов даже в отсутствии однофазного замыкания (ОЗЗ).

Искусственное предупреждение резонансных явлений может быть достигнуто путём преднамеренного рассогласования соответствующих цепей, в результате чего удаётся снизить Ucм и выровнять показания контрольных приборов.

Дополнительное замечание. Варьировать величину компенсационных токов допускается в пределах, при которых образовавшееся в случае аварии рассогласование не приводило бы к появлению Ucм более чем 0,7 Uф.

Защита, реагирующая на наложенный ток.

Для повышения устойчивости функционирования защит от однофазных замыканий на землю, реагирующих на ток замыкания не промышленной частоты, была разработана защита, реагирующая на наложенный ток. Наложенный ток может быть частотой как выше промышленной, так и ниже. Для создания тока повышенной частоты возможно использование нелинейного сопротивления, включенного между нейтралью сети и землёй. Однако данное устройство значительно повышает стоимость таких защит и может снизить надёжность функционирования защиты. Также можно отметить тот факт, что значительная высокочастотная составляющая может присутствовать в токах присоединений и в нормальном режиме. Это в первую очередь относится к сетям, связанным с производствами, имеющими нелинейную нагрузку. В таких случаях описанный способ защиты непригоден. Кроме того, как показывают некоторые исследования, гармоники с частотой 100 Гц появляются почти в 2 раза чаще, чем, например, с частотой 25 Гц и амплитуды их намного больше.

К основным недостаткам защит, реагирующих на наложенный ток частотой ниже промышленной, можно отнести необходимость подключения в нейтрали сети специального устройства для создания контрольного тока, влияние на устойчивость функционирования защиты погрешностей ТТНП, возрастающих при уменьшении рабочей частоты, усложнение схемы первичной коммутации из-за необходимости подключения источника наложенного тока и трудности подключения источника вспомогательного тока при использовании в сети нескольких ДГР, установленных на разных объектах. Также не исключены сложности отстройки от естественных гармонических составляющих при внешних дуговых перемежающихся ОЗЗ, при которых спектр тока зависит от параметров сети и режима заземления её нейтрали, положения точки ОЗЗ в сети.

Общий контроль изоляции в распределительных сетях 6 – 35 кВ

Для выявления нарушения изоляции фаз относительно земли в электроустановках предусматривается так называемый общий контроль изоляции. Для этих целей применяется специальный трехфазный пятистержневой трансформатор напряжения, одна из вторичных обмоток которого соединяется в «разомкнутый треугольник» и является фильтром напряжения нулевой последовательности (ФННП) (Рис.7). К выходу этого фильтра присоединяется реле напряжения KV. При замыкании фазы на землю на выходе фильтра появляется напряжение нулевой последовательности 3U, под действием которого реле срабатывает и действует на сигнал. Поврежденная фаза определяется, как правило, по трем вольтметрам включенных в другую вторичную обмотку трансформатора напряжения. В этом случае показания вольтметра в поврежденной фазе будут равны нулю при металлическом замыкании и меньше фазного напряжения, если в точке замыкания имеется переходное сопротивление. Электрическая схема контроля изоляции в сетях 6 – 35 кВ представлена на Рис.7.

Рис. 7. Схема общего контроля изоляции в сети 6-10кВ

Причиной появления напряжения нулевых последовательностей 3Uявляется нарушение симметрии фазных напряжений ЛЭП относительно земли (рис. 8 г, д).

Векторные диаграммы напряжения и емкостных токов для нормального режима показано на рис. 8 а, б.

Расчет емкостного тока сети

Расчет емкостного тока сети

Рис. 8. Схемы замещения сети с изолированной нейтралью: а, б — нормальный режим сети и векторные диаграммы напряжений емкостных токов; в, г, д, е – при замыкании фазы А на землю и векторные диаграммы.

Векторные диаграммы напряжения и ёмкостных токов при замыкании фазы «А» на землю представлены на рис.8 в, г.

Симметричные составляющие напряжений и ёмкостного тока замыкания Iзпри замыкании фазы «А» на землю представлены на Рис.8 д, е.

Реальное распределение токов нулевых последовательностей 3I в конкретной распределительной сети 10кВ показано на Рис. 9.

Рис. 9. Токораспределение 3I по фидерам ЛЭП

Из приведенной на Рис. 9 схемы распределения 3I в реальной сети 10 кВ нужно уяснить следующее:

– емкостной ток нулевой последовательности 3I в неповрежденных линиях имеет направление «от линии – к шинам»; в поврежденной линии «от шин – в линию».

– емкостной ток 3I в поврежденной линии равен сумме емкостных токов от неповрежденных линий

Расчет емкостного тока сети

Эти два свойства широко используют при выполнении ряда защит от замыкания на землю.

Величина тока замыкания Iз=3Iв практических расчетах для настройки защит может определяться через удельную ёмкость Суд (мкФ/км).

где Uф–фазное напряжение;

l — длина электрически связанной сети, км.

Величина Судзависит от конструкции сетей и составляет ориентировочно:

–5.5 · 10 -3 мкф/км – для воздушных ЛЭП;

–190 ·10 -3 мкф/км – для кабельных ЛЭП.

В практике можно воспользоваться также и империческими формулами для определения тока замыкания :

– воздушные ЛЭП

– кабельные ЛЭП

где U – линейное напряжение, кВ

l – длина сетей, км

Примеры защит от замыкания фазы на землю

Защита от замыкания на базе фильтра тока нулевой

Последовательности

Для токовых защит отходящих фидеров используются специальные трансформаторы тока нулевой последовательности (ТТНП), рис. 10.

Рис. 10. Трансформатор тока нулевой последовательности:

а) — устройство; б) – установка ТТНП на кабеле

Расчетные уставки защиты. Первичный ток срабатывания защиты, выполненной на реле РТ-40/0,2 или РТЗ-50, выбирается из условия несрабатывания зашиты от броска собственного емкостного тока линии при внешнем замыкании на землю по выражению:

где kотс – коэффициент отстройки (kотс=1,1÷1,2); kб – коэффициент, учитывающий бросок собственного емкостного тока при внешних перемежающихся замыканиях на землю; IС – собственный емкостной ток. Определение IС производится:

– для кабельной ЛЭП:

где IС0 – величина IС на 1 км длины одного кабеля (табл. 2); l – длина линии; n – число кабельных линий;

– для воздушной ЛЭП:

где l – длина линии; IС0.ВЛ – величина IС на 1 км длины ВЛ (табл.3).

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Подключение телевизионной розетки к антенне
Расчет емкостного тока сети