Подписка на рассылку
Измерение сопротивления изоляции контрольных кабелей входит в комплекс мероприятий по оценке состояния самого кабеля и/или определению безопасности работы определенного участка электрической цепи. Полученные в результате замеров сведения помогают определить примерный остаточный срок службы кабеля — об этом можно судить по качеству (текущему состоянию) его оболочки и/или изоляции токопроводящих жил. Сопротивление контрольного кабеля производится при определенных условиях со строгим соблюдением правил безопасности. Для выполнения операции измерения используются мегаомметры аналогового или цифрового типа.
Когда и при каких условиях производятся замеры
Согласно современным требованиям, приводимым в ПУЭ и ПТЭЭП документации, испытания изоляции на сопротивление контрольного кабеля должны производиться не реже, чем 1 раз в 3 года (1 раз в год в случае с кабелями, эксплуатируемыми в особо опасных помещениях либо задействованными в работе подвижных установок — лифты, краны и т. д.). Частота проверок также зависит от условий эксплуатации кабельной продукции — в этом случае испытания должны проводиться согласно правилам эксплуатации, устанавливаемым еще на стадии проектирования цепей управления.
Сопротивление изоляции контрольных кабелей производятся при соблюдении следующих условий:
• Температура окружающей среды — от –30 до +50°С. Влажность воздуха до 90 %. Допустимая температура и влажность зависят от возможности конкретной модели мегаомметра работать при тех или иных условиях. • Участки кабеля, условия измерения и величина напряжения, прикладываемая к токопроводящим жилам, зависят от конкретной марки изделия. • При отсутствии документации к конкретной марке контрольного кабеля, согласно ПУЭ (таблица 1.8.39), к жилам прикладывается напряжение величиной от 500 до 1000 В. • Контрольный кабель может испытываться со всеми подключенными к нему аппаратами (пускатели, реле, приборы и т. д.).
Меры безопасности:
• Замеры сопротивления изоляции контрольных кабелей напряжением до 1 кВ допустимо производить специалистами с 3-й или выше группой по электробезопасности. • Кабель отключается от питающей сети, после чего с него снимается остаточное напряжение путем заземления токопроводящих частей. • Перед началом процедур необходимо убедиться в отсутствии людей у той части аппарата, к которой присоединен мегаомметр. • Напряжение прикладывается к токоведущим частям кабеля при помощи измерительных щупов с изолированными держателями. • Запрещается прикасаться к токопроводящим жилам, к которым подключен работающий мегаомметр. • По завершению измерений с измеряемой части кабеля снимается остаточный заряд путем его кратковременного заземления или включения соответствующей функции мегаомметра (присутствует в некоторых моделях устройств).
Методика проведения измерений
Измерение сопротивления изоляции контрольных кабелей производятся согласно требованиям, предъявляемым к проведению измерения сопротивления низковольтных кабелей (до 1 кВ) за одним исключением: токопроводящие жилы можно не отсоединять от электрооборудования. Для выполнения процедуры требуется использование цифрового/аналогового мегаомметра, рассчитанного на работу при напряжении от 500 до 2500 В (зависит от спецификации конкретной марки кабеля). Алгоритм выполнения измерений выглядит следующим образом:
1. Проверка отсутствия напряжения в испытуемых токопроводящих жилах. Снятие остаточного напряжения путем заземления испытуемых жил. 2. С испытуемой стороны кабеля концы токопроводящих жил разделываются (оголяются) и разводятся друг от друга на некоторое расстояние (5–10 см). 3. Каждая жила кабеля испытывается отдельно следующим образом: o Испытуемая жила подключается к одному из входов («+») мегаомметра, все остальные жилы объединяются между собой и подключаются к «земле», куда также подключается второй вход («–») прибора (см. рисунок ниже). o На кабель подается напряжение. Если мегаомметр снабжен электромеханическим генератором, напряжение генерируется путем вращения рукоятки на оборотах 120–150 об/мин. Если генератор не предусмотрен, используется внешний источник электропитания (питающая сеть или аккумулятор). o Испытания проводятся в течение 1 минуты. По истечении этого времени результат заносится в журнал. o Далее действия повторяются по отношению к каждой токопроводящей жиле (испытуемая жила подключается к выводу мегаомметра, все другие — объединяются в единую цепь со вторым выводом прибора и подключаются к «земле»).
Работа с мегаомметром
Что такое мегаомметр?
Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.
Итак:
На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
На фото изображен универсальный мегаомметр
По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.
Кто и когда имеет право производить замеры мегаомметром
Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.Итак:
Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.
Как работать с мегаомметром?
Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.
Схема подключения мегаомметра в трехфазной цепи
Итак:
- Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
- После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
- В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
- После этого включаем все выключатели сети освещения.
- Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
- Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
- После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
- Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.
Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.
Как проводятся измерения
Перед началом измерительных работ мегаомметр обязательно проверяется на работоспособность. С этой целью выводы устройства нужно коротко замкнуть между собой. Далее путем вращения ручки генератора устанавливается наличие электрической цепи в соответствии с показаниями прибора. Затем выводы разделяются друг с другом и изолируются, после чего с прибора нужно снять данные о максимально возможных показаниях. Основная суть данного метода заключается в измерениях соотношения между приложенным постоянным напряжением изоляции и током, протекающим сквозь нее.
В начале измерений проводится визуальный осмотр целостности электропроводки и распределителей, в которых соединяются провода. Далее исследуются места непосредственного подключения проводов к оборудованию. Проведение замеров начинается только после обесточивания всей линии и отключения потребителей. В устройствах с напряжением не более 400 вольт, сопротивление изоляции должно быть не менее 0,5 мОм. Все данные измерений фиксируются в протоколе. Для замеров должны использоваться только проверенные, лицензированные приборы.
В однофазной сети замеры выполняются между проводниками фазы и нуля, а затем между ними же и защитным проводом. Количество измерений должно соответствовать количеству проводов, имеющихся в данной цепи. Минимально допустимое значение сопротивления составляет не менее 0,5 мОм. Если измерения указывают на более низкие параметры, в этом случае вся электрическая цепь разбивается на отдельные участки. После этого проводятся замеры изоляции на каждом из них, начиная от распределительного щита. Обнаруженный провод с неисправной изоляцией подлежит обязательной замене.
Перед началом замеров нужно обязательно проверить температуру окружающей среды. При наличии отрицательных температур наступает превращение в лед водяных частичек, содержащихся в электропроводке. В результате, свойства проводника изменяются и показания прибора становятся неточными.
По итогам измерений составляется протокол, в котором фиксируются полученные результаты. В трехфазных сетях выполняется не менее 10 замеров, в однофазных вполне достаточно и трех. В самом конце протокола указывается соответствие проведенных измерений требованиям ПУЭ.
Проверка электропроводки
Сначала производится осмотр провода на предмет обнаружения явных повреждений. Если они есть, то провод необходимо отремонтировать или заменить. Если оболочка целая, то проверяют соединение этого провода с розеткой или выключателем.
Выполняется подключение мегаомметра к фазной и нулевой жилам, затем следует замерить сопротивление. Аналогичные действия повторяются для фазного провода и заземления.
В том случае, когда величина измеренного сопротивления соответствует установленному нормативу, проверка оканчивается. Если нет, то провода разделяют на более мелкие участки и повторяют процедуру. Таким образом находят место, где показатель прибора намного меньше по сравнению с тем, какое должно быть сопротивление согласно нормативу.
Какие измерительные приборы могут применяться
На первый взгляд может показаться, что было бы логично для этой цели использовать мультиметр. Однако в большинстве случаев ток, который проходит через проводку, настолько мал, что этим измерительным прибором не получится его точно измерить. В таких случаях удобно воспользоваться мегаомметром, с помощью которого можно измерить напряжение и электроток. Эти приборы могут быть аналоговыми или цифровыми. На основании закона Ома по полученным данным определяется величина сопротивления.
Принцип работы прибора можно пояснить на примере электромеханического варианта мегаомметра.
Чтобы подать ток, используется ручной генератор (a). Фактически речь идёт о ручке, которую для получения энергии необходимо покрутить. При этом нужно, чтобы скорость вращения была не меньше двух оборотов в секунду. К стрелке прибора подсоединён аналоговый амперметр (b).
Шкала прибора (c) проградуирована таким образом, чтобы показывать величину сопротивления. В схеме используется несколько резисторов (d). Сколько их — зависит от модели прибора. Имеется переключатель шкалы измерений (е). При этом можно измерять сопротивление в Омах или мегаОмах. Имеются входные клеммы (f), к которым подключаются провода.
Одним из достоинств такого прибора является то, что он не нуждается в дополнительном питании, поскольку для измерений применяется ток, полученный с помощью ручного генератора. Однако при его использовании необходимо учитывать присущие ему недостатки:
- Чтобы обеспечить нужную точность измерений, прибор должен оставаться неподвижным. Однако при вращении рукоятки этого добиться трудно.
- На точность оказывает влияние то, насколько равномерно выполняют вращение рукоятки. Необходимо обеспечить подачу постоянного напряжения при измерении. Соблюдение этого условия не всегда возможно.
- Замер сопротивления изоляции осуществить таким устройством в одиночку сложно. Поэтому с ним обычно работают вдвоем: один человек крутит ручку, второй непосредственно проверяет сопротивление изоляции кабеля или другого оборудования.
В приборе применяется нелинейная шкала, что отрицательно сказывается на точности измерений. В последующих моделях производители перешли от вращения ручки для получения тока к использованию источника электропитания. Это помогло избавиться от большинства недостатков электромеханического варианта прибора.
Большинство современных мегаомметров являются цифровыми. В их конструкциях активно применяются микросхемы. Использование современных микропроцессоров и других микросхем позволяет обеспечить относительно высокую точность измерений. При работе с цифровыми устройствами достаточно задать исходные данные и выбрать нужный режим работы. Их достоинствами являются компактность и большая функциональность.
Что такое сопротивление изоляции кабеля и его нормы
Сопротивление изоляции — один из главнейших параметров кабелей и проводов, ведь в ходе эксплуатации силовые и сигнальные кабели всегда подвержены различным внешним воздействиям.
Кроме того, помимо внешних воздействий, постоянно присутствует и влияние жил внутри кабеля друг на друга, их электрическое взаимодействие, что непременно приводит к появлению утечек.
Добавив сюда факторы, влияющие на качество изоляции, мы получим более цельную картину.
Так, например, подземные распределительные телефонные линии выполняются бронированным лентой кабелем, а некоторые телекоммуникационные кабели заключают в оболочку из алюминия для защиты от внешних токовых помех.
Что касается диэлектрических свойств изоляции, то не только они влияют на выбор конкретного материала для того или иного кабеля. Не менее важна термостойкость: резина более стойка к высоким температурам, чем пластмасса, пластмасса — лучше чем бумага и т.д.
Так, изоляция кабеля — это защита жил от их влияния друг на друга, от короткого замыкания, от утечек, и от внешних воздействий со стороны окружающей среды. А сопротивление изоляции определяется величиной оного между жилами и между жилой и наружной поверхностью изолирующей оболочки (или между жилой и экраном).
Безусловно материал изоляции в процессе эксплуатации кабеля теряет свои былые качества, стареет, разрушается. И одним из показателей этих неблагоприятных изменений является снижение сопротивления изоляции постоянному току.
Сопротивление изоляции постоянному току для различных кабелей и проводов нормируется согласно их ГОСТ, что указывается в паспорте на конкретную кабельную продукцию: в лабораторных условиях фиксируется нормальное сопротивление изоляции при температуре окружающей среды в +20°C, после чего сопротивление приводится к длине кабеля в 1 км, что и указывается в технической документации.
Так, НЧ-кабели связи имеют минимальное нормируемое сопротивление 5 ГОм/км, а коаксиальные — до 10 ГОм/км.
При замерах учитывают, что это приведенная длина для 1 км кабеля, соответственно кусок вдвое длиннее будет иметь вдвое меньшее сопротивление изоляции, а кусок вдвое более короткий — вдове большее.
К тому же температура и влажность при замерах оказывают существенное влияние на текущее значение, так что необходимо вводить поправки, специалисты это знают.
Говоря о силовых кабелях, учитывают положения ПУЭ п. 1.8.40.
Так, силовым кабелям цепей вторичной коммутации и осветительных электропроводок с напряжением до 1000 В приписывается норма от 0,5 МОм для каждой жилы между фазными проводами и между фазным и нулевым проводом и проводом защитного заземления. А для линий с напряжением от 1000 В и выше — норма сопротивления не указывается, но указывается ток утечки в мА.
Проводятся специальные испытания, при которых нормируется напряжение проверки. В соответствии с родом тока испытательного оборудования и назначением проверяемого кабеля, с учетом материала его изоляцией — выставляют испытательное напряжение на мегаомметре. Так при помощи мегаомметра и оценивают качество изоляции высоковольтных кабелей.
Сопротивление изоляции в 1 МОм на киловольт рабочего напряжения кабеля считается приемлемым, то есть для кабеля, работающего под напряжением в 10 кВ сопротивление в 10 МОм будет принято нормальным по итогу испытаний мегаомметром с проверочным напряжением 2,5 кВ.
Измерения сопротивления изоляции проводят регулярно мегаомметром: на мобильных установках — раз в полгода, на объектах повышенной опасности — раз в год, на остальных объектах — раз в три года. Данными измерениями занимаются квалифицированные специалисты. В результате измерений специалистом составляется документ — акт установленного Ростехнадзором образца.
По итогу проверки делается заключение о том, нуждается ли объект в ремонте или его работоспособность соответствует требованиям проверки. Если требуется ремонт — проводят ремонт с целью восстановления сопротивления изоляции до нормы. Протокол составляется и по итогам ремонта, после очередных замеров мегаомметром.
Напоследок
Регулярное и своевременное измерение сопротивления изоляции — главное условие надежной, безопасной и длительной эксплуатации всех электроприборов и электрических сетей. Проводить такие работы должны в обязательном порядке специалисты, имеющие большой опыт таких работ и соответствующие разрешительные документы.
Отправьте нам свой вопрос и менеджер ответит Вам в кратчайшие сроки
Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.
Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.
Что такое мегаомметр?
Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.
Итак:
На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В
. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.
Кто и когда имеет право производить замеры мегаомметром
Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.Итак:
Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.
Как работать с мегаомметром?
Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.
Итак:
- Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
- После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
- В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
- После этого включаем все выключатели сети освещения.
- Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
- Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
- После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
- Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.
Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.
Нормативы
В результате проведения измерений получают фактическое значение сопротивления изоляции проводов. Его необходимо сравнить с нормативными данными. Чтобы понять, каким именно документом нужно пользоваться в конкретном случае, надо знать, какие существуют нормативы. Следует учитывать, что предельные значения, ими предусмотренные, могут существенно различаться. Существуют нормы сопротивления изоляции для:
- Силовых или сигнальных кабелей, используемых в различных условиях.
- Силовых электроустановок, предназначенных для промышленной эксплуатации.
- Бытовых приборов, оснащенных сетевым шнуром.
Проверка электрического сопротивления изоляции зависит от напряжения, присутствующего в электросети. При этом надо учитывать, какая модель оборудования используется. Перед тем как проверить, следует ознакомиться с соответствующими документами, в которых указываются нормы сопротивления изоляции провода или кабеля. Далее приводится список наиболее распространенных ситуаций, для которых указывается допустимое сопротивление изоляции:
- При использовании электрических плит сопротивление изоляции — не меньше 1 МОм.
- Если кабель проложен в местности, где климатические условия можно считать нормальными, минимальное сопротивление изоляции составляет 0.5 МОм.
- Для изоляции электрооборудования, потребляющего напряжение до 1000 В, предельное сопротивление равно 1 МОм.
- Если питающее напряжение электроприбора находится в пределах 100–380 В, то ограничение равно 0.5 МОм.
- В тех случаях, когда питающее напряжение не превышает 50 В, сопротивление изоляции должно быть не менее 0.3 МОм.
- Для кабелей и проводов, используемых в щитовых установках, норма сопротивления изоляции составляет 1 МОм.
Нормирование сопротивления изоляции постоянному току
Таблица данных по уровню изоляции.
Сопротивление изоляции для различных марок кабеля как определенная величина одного из основных параметров изделия закладывается в ТУ или ГОСТ на изготовление конкретной кабельной продукции. На отгружаемую к реализации продукцию должен прилагаться паспорт с ее электрическими параметрами. К примеру, норма сопротивления изоляции для кабелей связи дается в приведении к 1 км длины, причем данные указываются для температуры окружающей среды +20°C.
Норма для кабелей связи городских низкочастотных – не менее 5000 МОм/км. Для коаксиальных и магистральных симметричных кабелей норма сопротивления изоляции достигает 10000 МОм/км. Практически использовать паспортные данные сопротивления изоляции при оценке состояния проверяемого кабеля можно только в пересчете их к длине реального куска кабеля. Если участок кабеля больше километра, то норматив делится на эту длину. Если меньше, то, наоборот, умножается. Полученные таким путем расчетные цифры могут применяться для оценки кабельной линии.
При проведении измерительных работ следует учитывать погодные условия , которые влияют на получаемые данные.
Однако не стоит забывать о том, что паспортные данные приводятся для температуры +20°C, поэтому следует учитывать поправки при проведении контрольных измерений на температуру и влажность. К примеру, при проведении контрольных измерений в сырую, дождливую погоду можно получить данные, которые будут ниже действительного сопротивления изоляции кабеля только за счет влажной поверхности контактных колодок или распределительных (оконечных) устройств. В таких случаях имеет смысл просушить поверхности с клеммами, на которые распаяны жилы измеряемого кабеля.
Для некоторых марок кабелей, имеющих алюминиевую оболочку и шланговое полиэтиленовое покрытие, нормируется сопротивление изоляции между оболочкой и землей. Норма на такое сопротивление изоляции – не менее 20 МОм/км. Для использования в реальной работе указанного норматива его также следует пересчитывать под действительную длину участка.
Для силовой кабельной продукции действуют следующие положения по сопротивлению изоляции постоянному току:
- Для силовых кабелей, применяемых в сетях с напряжением более 1000 В, величина указанного параметра не нормируется, но не может быть менее 10 МОм.
- Для силовых кабелей, применяемых в сетях с напряжением менее 1000 В, величина параметра не должна быть менее 0,5 МОм.
Для контрольных кабелей величина норматива не должна принимать значения менее 1 МОм.
Что несет ток утечки
Обнаружение токов утечки в электрической цепи (сети) говорит о том, что сопротивление изоляции уменьшилось, либо исчезло вовсе, ввиду разрушения или деформации изолирующего материала. Если говорить просто, то электрический ток нашел лазейку (или лазейки) в цепи, по которым он устремился к земле или на какие-то электропроводящие части, связанные с землей.
Другими словами, параллельно электрической цепи, работающей в нормальном режиме, при нарушении изоляции создается новая (паразитная) электрическая цепь, создающая дополнительную нагрузку на сеть и имеющая к тому же нестабильные параметры.
Определить электротехнические характеристики цепи-паразита практически невозможно, т.к. на нее влияет множество факторов -влажность, форма контура «точка утечки-земля», наличие прогресса по ухудшению изоляции. Тем более такие характеристики могут со временем меняться.
При появлении в сети утечки тока, она начинает работать в ненормальном режиме. Из-за этого появляются потери электроэнергии и риск возникновения пожара в результате разрушения электропроводки, и большой шанс попасть под напряжение человеку. Поэтому при монтаже новой электропроводки нужно обязательно выполнить замер сопротивления изоляции, причем не один раз.
Такая процедура позволит отловить ошибки монтажа еще на ранней стадии. При появлении токов утечки во время эксплуатации электропроводки, с ними начинают бороться установкой УЗО, организацией защитного заземления, монтажом системы уравнивания потенциалов.
Методы проверки сопротивления изоляции электропроводки
Проверку производят мегаомметром — электрическим прибором, предназначенным для измерения больших сопротивлений.
Измерение делают при высоких напряжениях (100, 250, 500, 1000 и 2500 Вольт), которые «выдает» прибор. Поэтому работа с мегаомметром при определенных обстоятельствах может представлять собой вполне реальную угрозу для жизни и здоровья человека!
Замер сопротивления выполняется при напряжении мегаомметра в 500 В. Минимально допустимое значение сопротивления изоляции (норма) — 0,5 МОм (500 кОм), идеальное — знак «бесконечность» по шкале прибора.
Проведение процесса измерения
Проверка сопротивления изоляции электропроводки в квартире и частном доме проводится между:
— фазой и рабочим нулем;
— фазой и фазой;
— фазой и PE-проводником (заземляющий);
— рабочим нулем и PE-проводником.
Подготовка и выполнение замеров
Перед началом измерений нужно подготовиться к работе. Обязательно визуально проверить места соединения жил проводов в распределительных коробках и в электрическом щитке. Отключить все автоматические выключатели, УЗО, а также световые выключатели. Проверить, не включены ли в сеть какие-либо бытовые электроприборы или оборудование.
Измерения сопротивления проводятся на вводе (электрический щиток). Все групповые линии проверяются на целостность изоляции по отдельности: сначала проводники одной (любой) группы зачищаются и подсоединяются к мегаомметру с помощью его соединительных проводов с зажимами, после чего выполняется замер сопротивления.
Во время измерений мегаомметр должен иметь устойчивое положение, не нужно его куда-либо наклонять или ставить вертикально. Если используется мегаомметр с механическим приводом, вращать ручку генератора нужно равномерно и достаточно быстро.
После проверки первой группы необходимо с этой группы снять заряд от мегаомметра, а затем уже приступать к проверке следующей группы. Сопротивление изоляции не должно быть менее 0,5 МегаОм. Идеальный вариант — прибор показывает «бесконечность». Если сопротивление меньше — ищите место утечки и меняйте провода